Three-Dimensional Documentation of Hadrian’s Temple in Ephesus (Turkey) Using Different Scanning Technologies and Combining these Data into a Final 3D Model

2012 ◽  
pp. 38-47
Author(s):  
Christiane Düffort ◽  
Bernd Breuckmann ◽  
Robert Kalasek ◽  
Ursula Quatember
Keyword(s):  
3D Model ◽  
2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


Author(s):  
Federico Cesarani ◽  
Maria Cristina Martina ◽  
Valter Capussotto ◽  
Andrea Giuliano ◽  
Renato Grilletto ◽  
...  

Facial reconstruction of mummies and corpses is important in anthropological, medical and forensic studies. The purpose of our study was to evaluate the role of three- Dimensional Multidetector CT examination for 3D facial reconstruction. We present a multidisciplinary work performed by radiologists, anthropologists and forensic police in reconstructing the possible physiognomy of an ancient Egyptian mummy. Three-Dimensional data were obtained from a well-preserved completely wrapped Egyptian mummy from the collection of the Egyptian Museum in Torino, Italy, dated from XXII or XXIII dynasty (945-715 BC). Data were used as a model for the rapid prototyping stereolithographic technique, a method which allows the creation of 3D model with digital data using synthetic materials such as resin or nylon.


Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


2013 ◽  
Vol 668 ◽  
pp. 870-874
Author(s):  
Heng Min Ding ◽  
Tie Qiao Zhang ◽  
Lv Chun Pu

In the paper, a model basing on solute conservative in every unit is developed for solving the solute diffusion equation during solidification. The model includes time-dependent calculations for temperature distribution, solute redistribution in the liquid and solid phases. Three-dimensional computations are performed for Al-Cu dendritic growth into an adiabatic and highly supersaturated liquid phase. A numerical algorithm was developed to explicitly track the sharp solid/liquid (S/L) interface on a fixed Cartesian grid. Three-dimensional mesoscopic calculations were performed to simulate the evolution of equiaxed dendritic morphologies.


2014 ◽  
Vol 20 (2) ◽  
pp. 354-375
Author(s):  
Xiaolong Li ◽  
Jiansi Yang ◽  
Bingxuan Guo ◽  
Hua Liu ◽  
Jun Hua

Currently, for tunnels, the design centerline and design cross-section with time stamps are used for dynamic three-dimensional (3D) modeling. However, this approach cannot correctly reflect some qualities of tunneling or some special cases, such as landslips. Therefore, a dynamic 3D model of a tunnel based on spatiotemporal data from survey cross-sections is proposed in this paper. This model can not only playback the excavation process but also reflect qualities of a project typically missed. In this paper, a new conceptual model for dynamic 3D modeling of tunneling survey data is introduced. Some specific solutions are proposed using key corresponding technologies for coordinate transformation of cross-sections from linear engineering coordinates to global projection coordinates, data structure of files and database, and dynamic 3D modeling. A 3D tunnel TIN model was proposed using the optimized minimum direction angle algorithm. The last section implements the construction of a survey data collection, acquisition, and dynamic simulation system, which verifies the feasibility and practicality of this modeling method.


2016 ◽  
Vol 7 (14) ◽  
pp. 20
Author(s):  
José Ignacio Rojas-Sola ◽  
José Porras-Galán ◽  
Laura García-Ruesgas

Agustín de Betancourt y Molina was one of the most distinguished engineers of the eighteenth and nineteenth centuries with numerous contributions to various fields of engineering, including civil engineering. This research shows the process followed in the documentation of the cultural heritage of that Canary engineer, especially in the geometric documentation of a machine for cutting grass in waterways presented in England in 1795 after three years researching on theory of machines. The baseline information has been recovered from the Canary Orotava Foundation of History of Science who has spent years collecting information about the Project Betancourt, in particular, planimetric information as well as a small report on its operation and description of parts of machine. From this information, we have constructed a three dimensional (3D) model using CAD techniques with the use of Solid Edge ST7 parametric software, which has enabled the team to create the 3D model as well as different detail plans and exploded views.


2017 ◽  
Vol 8 (16) ◽  
pp. 103 ◽  
Author(s):  
Carmen Díaz-Marín ◽  
Elvira Aura-Castro

This article describes the restoration of a glass bowl from the 16th-17thcentury by creating its three-dimensional (3D)model. The final purpose is to work with this model in order to avoid damaging situations that are associated with the manipulation of fragile objects. The gap areas, those corresponding to the missing fragments not found in the excavation, were carried out by constructing digital implants. A restricted area of the 3D model has been duplicated in order to accommodate it to confined intervals of the gap. The final implants were printed with acrylonitrile butadiene styrene (ABS) filament. These implants replace the lost areas and give stability back to the item by recovering the original morphology. The result can be compared with the outcome obtained by a traditional process, but differs due to the fact that requires minimum manipulation of the item, so it can contribute to preserve and safeguard the restored object. This is a non-invasive method which is offered as an alternative treatment, where the archaeological object is replaced by its virtual model in the steps of the process after 3D data acquisition. Significant differences have not been found in the 3D printing results obtained with the two types of filaments tested (white and clear).


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5858
Author(s):  
Ana Carolina Batista Brochado ◽  
Victor Hugo de Souza ◽  
Joice Correa ◽  
Suzana Azevedo dos Anjos ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
...  

Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell–surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.


2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


Sign in / Sign up

Export Citation Format

Share Document