scholarly journals Herbst appliance effects on pharyngeal airway ventilation evaluated using computational fluid dynamics

2017 ◽  
Vol 87 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Tomonori Iwasaki ◽  
Hideo Sato ◽  
Hokuto Suga ◽  
Ayaka Minami ◽  
Yuushi Yamamoto ◽  
...  

ABSTRACT Objective: To evaluate the effect of a Herbst appliance on ventilation of the pharyngeal airway (PA) using computational fluid dynamics (CFD). Materials and Methods: Twenty-one Class II patients (10 boys; mean age, 11.7 years) who required Herbst therapy with edgewise treatment underwent cone-beam computed tomography (CBCT) before and after treatment. Nineteen Class I control patients (8 boys; mean age, 11.9 years) received edgewise treatment alone. The pressure and velocity of the PA were compared between the groups using CFD based on three-dimensional CBCT images of the PA. Results: The change in oropharyngeal airway velocity in the Herbst group (1.95 m/s) was significantly larger than that in the control group (0.67 m/s). Similarly, the decrease in laryngopharyngeal airway velocity in the Herbst group (1.37 m/s) was significantly larger than that in the control group (0.57 m/s). Conclusion: The Herbst appliance improves ventilation of the oropharyngeal and laryngopharyngeal airways. These results may provide a useful assessment of obstructive sleep apnea treatment during growth.

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
K. Ramalingam ◽  
J. Fillos ◽  
S. Xanthos ◽  
M. Gong ◽  
A. Deur ◽  
...  

New York City provides secondary treatment to approximately 78.6 m3/s among its 14 water pollution control plants (WPCPs). The process of choice has been step-feed activated sludge. Changes to the permit limits require nitrogen removal in WPCPs discharging into the Long Island Sound. The City has selected step feed biological nitrogen removal (BNR) process to upgrade the affected plants. Step feed BNR requires increasing the concentration of mixed liquors, (MLSS), which stresses the Gould II type rectangular final settling tanks (FSTs). To assess performance and evaluate alternatives to improve efficiency of the FSTs at the higher loads, New York City Department of Environmental Protection (NYCDEP) and City College of New York (CCNY) have developed a three-dimensional computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Using Computational Fluid Dynamics (CFD) Model, Fluent 6.3.26TM as the base platform, sub-models of the SS settling characteristics as well as turbulence, flocculation, etc. were incorporated. This was supplemented by field and bench scale experiments to quantify the co-efficients integral to the sub-models. As a result, a three-dimensional model has been developed that is being used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs.


2020 ◽  
pp. 194589242095015
Author(s):  
Giancarlo B. Cherobin ◽  
Richard L. Voegels ◽  
Fábio R. Pinna ◽  
Eloisa M. M. S. Gebrim ◽  
Ryan S. Bailey ◽  
...  

Background Past studies reported a low correlation between rhinomanometry and computational fluid dynamics (CFD), but the source of the discrepancy was unclear. Low correlation or lack of correlation has also been reported between subjective and objective measures of nasal patency. Objective: This study investigates (1) the correlation and agreement between nasal resistance derived from CFD (RCFD) and rhinomanometry (RRMN), and (2) the correlation between objective and subjective measures of nasal patency. Methods Twenty-five patients with nasal obstruction underwent anterior rhinomanometry before and after mucosal decongestion with oxymetazoline. Subjective nasal patency was assessed with a 0-10 visual analog scale (VAS). CFD simulations were performed based on computed tomography scans obtained after mucosal decongestion. To validate the CFD methods, nasal resistance was measured in vitro (REXPERIMENT) by performing pressure-flow experiments in anatomically accurate plastic nasal replicas from 6 individuals. Results Mucosal decongestion was associated with a reduction in bilateral nasal resistance (0.34 ± 0.23 Pa.s/ml to 0.19 ± 0.24 Pa.s/ml, p = 0.003) and improved sensation of nasal airflow (bilateral VAS decreased from 5.2 ± 1.9 to 2.6 ± 1.9, p < 0.001). A statistically significant correlation was found between VAS in the most obstructed cavity and unilateral airflow before and after mucosal decongestion (r = −0.42, p = 0.003). Excellent correlation was found between RCFD and REXPERIMENT (r = 0.96, p < 0.001) with good agreement between the numerical and in vitro values (RCFD/REXPERIMENT = 0.93 ± 0.08). A weak correlation was found between RCFD and RRMN (r = 0.41, p = 0.003) with CFD underpredicting nasal resistance derived from rhinomanometry (RCFD/RRMN = 0.65 ± 0.63). A stronger correlation was found when unilateral airflow at a pressure drop of 75 Pa was used to compare CFD with rhinomanometry (r = 0.76, p < 0.001). Conclusion CFD and rhinomanometry are moderately correlated, but CFD underpredicts nasal resistance measured in vivo due in part to the assumption of rigid nasal walls. Our results confirm previous reports that subjective nasal patency correlates better with unilateral than with bilateral measurements and in the context of an intervention.


2011 ◽  
Vol 111 (6) ◽  
pp. 1819-1827 ◽  
Author(s):  
Steven C. Persak ◽  
Sanghun Sin ◽  
Joseph M. McDonough ◽  
Raanan Arens ◽  
David M. Wootton

Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm2/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm2/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm2/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.


Author(s):  
P G Tucker ◽  
P S Keogh

The use of computational fluid dynamics (CFD) techniques enables performance predictions of bearing designs to be made when the usual operating assumptions of the Reynolds equation Jail to hold. This paper addresses the application of a full three-dimensional thermohydrodynamic CFD approach to journal bearings. The journal/shaft may extend beyond the bearing length and the rotation effect is accounted for in the thermal transport process. A circumferentially uniform shaft surface temperature is not assumed. Cavitation modelling is based on averaged lubricant/vapour properties and does not set pressures directly, allowing sub-ambient pressures to be predicted. Lubricant inlet grooves are incorporated with conservation of mass and the possibility of backflow. The modelling is validated against published experimental work on fully circumferential, single inlet and two-inlet circular bore bearings. The predicted and experimental results are in general agreement, although the predicted cyclic variation of journal surface temperature is less than the experimental value. However, an assumption in the predictions was of a non-orbiting journal. The techniques developed may, in principle, be extended to the orbiting journal case providing a dynamic cavitation model can be formulated.


2020 ◽  
Vol 19 ◽  

Three-dimensional computational fluid dynamics (CFD) is used for the design optimization of the layout of an autonomous underwater vehicles (AUV) containing three torpedo-shaped hulls. The AUV layout is defined by two parameters a and b present the stance following YY and XX respectively. several simulations are carried on the AUV with different positions of the torpedo in order to define the optimal layout which designates the minimum drag. the numerical results approve that the variation in the drag coefficient of the AUV is the to the interaction of the flow rate and the pressure change between the both hulls. in addition, an optimal layout for the minimum AUV drag with two torpedoes is found which provides a drag reduce of about 11.4% lower than a single UV with a single torpedo.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Xue Guan Song ◽  
Lin Wang ◽  
Young Chul Park

A spring-loaded pressure safety valve (PSV) is a key device used to protect pressure vessels and systems. This paper developed a three-dimensional computational fluid dynamics (CFD) model in combination with a dynamics equation to study the fluid characteristics and dynamic behavior of a spring-loaded PSV. The CFD model, which includes unsteady analysis and a moving mesh technique, was developed to predict the flow field through the valve and calculate the flow force acting on the disk versus time. To overcome the limitation that the moving mesh technique in the commercial software program ANSYS CFX (Version 11.0, ANSYS, Inc., USA) cannot handle complex configurations in most applications, some novel techniques of mesh generation and modeling were used to ensure that the valve disk can move upward and downward successfully without negative mesh error. Subsequently, several constant inlet pressure loads were applied to the developed model. Response parameters, including the displacement of the disk, mass flow through the valve, and fluid force applied on the disk, were obtained and compared with the study of the behavior of the PSV under different overpressure conditions. In addition, the modeling approach could be useful for valve designers attempting to optimize spring-loaded PSVs.


Author(s):  
Khunnawat Ountaksinkul ◽  
Sirada Sripinun ◽  
Panut Bumphenkiattikul ◽  
Surapon Bubphacharoen ◽  
Arthit Vongachariya ◽  
...  

This work studies the flow characteristics in the Berty reactor, a gradientless reactor for kinetic studies, using three-dimensional (3D) computational fluid dynamics (CFD), and the non-ideal continuous stirred tank reactors...


2001 ◽  
Author(s):  
Brian L. Smith

Abstract The paper describes three-dimensional Computational Fluid Dynamics (CFD) calculations undertaken in support of analyses of steam/air mixing which takes place in the drywell volumes of the 1/40th-scale ESBWR1 mock-up facility PANDA under conditions of symmetric steam/air injection and asymmetric outflow. Steady-state simulations for pure steam conditions illustrate how the flow streams mix to ensure balanced outflow conditions to the condensers. A transient calculation has also been performed to examine how air released from solution in the PANDA boiler would ultimately accumulate in the separate condenser units. Results provide a possible explanation for the rundown in performance of one of the condensers which was repeatedly observed in some of the PANDA tests.


Author(s):  
Rajani Satti ◽  
Narasimha Rao Pillalamarri ◽  
Eckard Scholz

In this study, the application of computational fluid dynamics (CFD) is explored to predict the performance characteristics in a typical single-stage downhole turbine. The single-stage turbine model utilized for this study consists of a stator and a rotor. A finite-volume based CFD approach was implemented to simulate the complex flow field around the turbine. The analysis is based on transient, three-dimensional, isothermal turbulent flow in an incompressible fluid system. The inlet flow rates and angular velocity of the rotor were varied to encompass the operating regime. Comparison with experimental data revealed excellent agreement, proving reliability of the model in predicting the performance characteristics. Motivated by the successful model validation, a parametric study (considering blade tip clearance and blade count) was also conducted to understand the effects of the design parameters on the performance of the turbine. Detailed flow visualizations and efficiency calculations were also done to provide further insight into the overall performance of the turbine. As part of the present study, significant efforts were also spent in the following areas: standardization of CFD methodology and assessment of commercial software to develop an integrated CFD-driven design process.


Sign in / Sign up

Export Citation Format

Share Document