scholarly journals In vitro Streptococcus mutans adhesion and biofilm formation on different esthetic orthodontic archwires

2021 ◽  
Author(s):  
Deise C. Oliveira ◽  
Joshua J. Thomson ◽  
Jamal A. Alhabeil ◽  
Jonathan M. Toma ◽  
Sarah C. Plecha ◽  
...  

ABSTRACT Objectives To evaluate the ability of different esthetic archwires to retain oral biofilms in vitro. Materials and Methods Seven different brands of coated orthodontic archwires were tested: two epoxy coated, two polytetrafluoroethylene coated, two rhodium coated, and one silver plus polymer coated. Conventional uncoated metallic archwires were used as controls. Streptococus mutans adherence to archwires was quantified by colony count following 24 hours of biolfilm growth, and total wire-associated biofilm was measured using a crystal violet staining assay. For both tests, two conditions were used: 0% sucrose and 3% sucrose. For statistical analysis, P < .05 was considered as statistically significant. Results For S. mutans colony forming units per biofilm, there were no statistically significant differences among the various archwires (P = .795 for 0% sucrose; P = .905 for 3% sucrose). Regarding total biofilm formed on archwires in the 3% sucrose condition, there were statistically significant differences in crystal violet staining only for the comparison between Niti Micro Dental White and Copper Ni-Ti wires (P < .05). Conclusions The clinical use of esthetic-coated orthodontic wires may be considered to have similar risks as uncoated archwires for biofilm retention.

2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Letícia Roloff Stallbaum ◽  
Beatriz Bohns Pruski ◽  
Suelen Cavalheiro Amaral ◽  
Stella Buchhorn de Freitas ◽  
Daniela Rodriguero Wozeak ◽  
...  

Introduction. A significant cause of mortality in the intensive care unit (ICU) is multidrug-resistant (MDR) Gram-negative bacteria, such as Klebsiella pneumoniae carbapenemase (KPC). Biofilm production is a key factor in KPC colonization and persistence in the host, making the treatment difficult. Gap Statement. The aim of this study was to evaluate the antibiotic resistance, molecular and phenotypic biofilm profiles of 12 KPC isolates associated with nosocomial infection in a hospital in Pelotas, Rio Grande do Sul, Brazil. Methodology. Clinical isolates were obtained from different sources, identified and characterized by antibiotic resistance and carbapenemase synthesis following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to evaluate the presence of carbapenemase (blaKPC ) and biofilm formation-associated genes (fimA, fimH, rmpA, ecpA, mrkD and wabG). Additionally, phenotypic evaluation of in vitro biofilm formation capacity was evaluated by Congo red agar (CRA) assay and the crystal violet staining method. Results. The 12 isolates evaluated in this study presented the blaKPC gene and were positive for synthesizing carbapenemases in vitro. In the carbapenem class, 83.3 % isolates were resistant and 16.7 % intermediately resistant to imipenem and meropenem. Molecular analyses found that the fimA and wabG genes were detected in 75 % of isolates, while fimH and ecpA were detected in 42 % and mrkD were detected in 8.3 % (1). The CRA assay demonstrated that all isolates were slime producers and 91.7 % (11) of isolates were classified as strong and 8.3 % (1) as moderate biofilm producers by the crystal violet staining method. The optical density (OD540nm) for strong biofilm formers ranged from 0.80±0.05 to 2.47±0.28 and was 0.55±0.12 for moderate biofilm formers. Conclusion. Our study revealed a high level of antibiotic resistance and biofilm formation in KPC isolates obtained from a hospital in Pelotas, RS, Brazil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heema K. N. Vyas ◽  
Jason D. McArthur ◽  
Martina L. Sanderson-Smith

AbstractGroup A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yosi Farkash ◽  
Mark Feldman ◽  
Isaac Ginsburg ◽  
Doron Steinberg ◽  
Miriam Shalish

Candida albicans (C. albicans) is the most prevalent opportunistic human pathogenic fungus and can cause mucosal membrane infections and invade the blood. In the oral cavity, it can ferment dietary sugars, produce organic acids and therefore has a role in caries development. In this study, we examined whether the polyphenol rich extractions Polyphenon from green tea (PPFGT) and Padma Hepaten (PH) can inhibit the caries-inducing properties of C. albicans. Biofilms of C. albicans were grown in the presence of PPFGT and PH. Formation of biofilms was tested spectrophotometrically after crystal violet staining. Exopolysaccharides (EPS) secretion was quantified using confocal scanning laser microscopy (CSLM). Treated C. albicans morphology was demonstrated using scanning electron microscopy (SEM). Expression of virulence-related genes was tested using qRT-PCR. Development of biofilm was also tested on an orthodontic surface (Essix) to assess biofilm inhibition ability on such appliances. Both PPFGT and PH dose-dependently inhibited biofilm formation, with no inhibition on planktonic growth. The strongest inhibition was obtained using the combination of the substances. Crystal violet staining showed a significant reduction of 45% in biofilm formation using a concentration of 2.5mg/ml PPFGT and 0.16mg/ml PH. A concentration of 1.25 mg/ml PPFGT and 0.16 mg/ml PH inhibited candidal growth by 88% and EPS secretion by 74% according to CSLM. A reduction in biofilm formation and in the transition from yeast to hyphal morphotype was observed using SEM. A strong reduction was found in the expression of hwp1, eap1, and als3 virulence associated genes. These results demonstrate the inhibitory effect of natural PPFGT polyphenolic extraction on C. albicans biofilm formation and EPS secretion, alone and together with PH. In an era of increased drug resistance, the use of phytomedicine to constrain biofilm development, without killing host cells, may pave the way to a novel therapeutic concept, especially in children as orthodontic patients.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9543
Author(s):  
Qian Zhang ◽  
Yansi Lyu ◽  
Jingkai Huang ◽  
Xiaodong Zhang ◽  
Na Yu ◽  
...  

Background Sanguinarine (SAG), a benzophenanthridine alkaloid, occurs in Papaveraceas, Berberidaceae and Ranunculaceae families. Studies have found that SAG has antioxidant, anti-inflammatory, and antiproliferative activities in several malignancies and that it exhibits robust antibacterial activities. However, information reported on the action of SAG against Providencia rettgeri is limited in the literature. Therefore, the present study aimed to evaluate the antimicrobial and antibiofilm activities of SAG against P. rettgeri in vitro. Methods The agar dilution method was used to determine the minimum inhibitory concentration (MIC) of SAG against P. rettgeri. The intracellular ATP concentration, intracellular pH (pHin), and cell membrane integrity and potential were measured. Confocal laser scanning microscopy (CLSM), field emission scanning electron microscopy (FESEM), and crystal violet staining were used to measure the antibiofilm formation of SAG. Results The MIC of SAG against P. rettgeri was 7.8 μg/mL. SAG inhibited the growth of P. rettgeri and destroyed the integrity of P. rettgeri cell membrane, as reflected mainly through the decreases in the intracellular ATP concentration, pHin and cell membrane potential and significant changes in cellular morphology. The findings of CLSM, FESEM and crystal violet staining indicated that SAG exhibited strong inhibitory effects on the biofilm formation of P. rettgeri and led to the inactivity of biofilm-related P. rettgeri cells.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 352
Author(s):  
Jan-Luca Schmid ◽  
Martin Kirchberg ◽  
Sandra Sarembe ◽  
Andreas Kiesow ◽  
Anton Sculean ◽  
...  

Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 days and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 day old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 days, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.


2017 ◽  
Vol 41 (4) ◽  
pp. 294-299 ◽  
Author(s):  
Roger P Dotsey ◽  
Elizabeth A S Moser ◽  
George J Eckert ◽  
Richard L Gregory

Objective: To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Study Design: Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. Results: The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. Conclusions: HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.


2009 ◽  
Vol 79 (5) ◽  
pp. 915-921 ◽  
Author(s):  
Janvan Gastel ◽  
Marc Quirynen ◽  
Wim Teughels ◽  
Martine Pauwels ◽  
Wim Coucke ◽  
...  

Abstract Objective: To test the hypothesis that there are differences in total bacterial counts and capacity for biofilm formation between seven different bracket types. Material and Methods: By means of an in vitro experiment, seven commercially available bracket systems (Damon [A], Clarity [B], Mystique [C], Speed [D], Victory MBT [E], Micro-loc [F], and Generus [G]) were compared. A total of 25 premolar brackets of each bracket system were incubated in brain heart infusion medium containing the saliva and bacteria of two orthodontic patients. After 72 hours, the amounts of aerobe and anaerobe bacteria were determined by counting the colony-forming units (CFU). The CFU ratio (aerobe/anaerobe) also was calculated, and the black pigmented bacteria were analyzed. Results: Significant differences between the different bracket types in terms of biofilm formation were found. Bracket types can be arbitrarily divided into low, intermediate, and high plaque-retaining brackets. The group with low adhesion consists of bracket types E, F, and G; the group with high adhesion of bracket types A, B, and C; and type D exhibits intermediate adhesion. The group with high microbial adhesion (A, B, and C) did present significantly lower CFU ratios (aerobe/anaerobe) than were exhibited by the other bracket systems (P < .05). Conclusion: The hypothesis is accepted. Orthodontic brackets serve as different loci for biofilm formation; in this in vitro study, significant differences were noted between the different types of brackets.


2001 ◽  
Vol 110 (10) ◽  
pp. 946-951 ◽  
Author(s):  
Rolien H. Free ◽  
G. Jolanda Elving ◽  
Ranny van Weissenbruch ◽  
Henk J. Busscher ◽  
Henny C. vander Mei ◽  
...  

In order to determine the influence of probiotic bacteria on biofilm formation on Groningen and Provox 2 voice prostheses in an artificial throat, we grew biofilms on both types of voice prostheses and exposed them 3 times daily to a probiotic bacterial suspension. As a control, we perfused an artificial throat with phosphate-buffered saline solution. Perfusion with Lactococcus lactis 53 suspension reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 17% and 22% and on the Provox 2 prostheses to 19% and 45%, compared to the number of colony-forming units on the control prosthesis, which was set at 100%. A suspension of Streptococcus thermophilus b reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 53% and 33% and on the Provox 2 prostheses to 14% and 0%, as compared to the control prosthesis. All other probiotic strains tested caused some reduction in the percentages of bacteria or yeasts, but strong differences between the types of prostheses were observed. In conclusion, L lactis 53 and S thermophilus b strongly reduce the occurrence of yeasts and bacteria in voice prosthetic biofilms.


2006 ◽  
Vol 74 (3) ◽  
pp. 1588-1596 ◽  
Author(s):  
Melanie M. Pearson ◽  
Cassie A. Laurence ◽  
Sarah E. Guinn ◽  
Eric J. Hansen

ABSTRACT Mutant analysis was used to identify Moraxella catarrhalis gene products necessary for biofilm development in a crystal violet-based assay involving 24-well tissue culture plates. The wild-type M. catarrhalis strains that formed the most extensive biofilms in this system proved to be refractory to transposon mutagenesis, so an M. catarrhalis strain was constructed that was both able to form biofilms in vitro and amenable to transposon mutagenesis. Chromosomal DNA from the biofilm-positive strain O46E was used to transform the biofilm-negative strain O35E; transformants able to form biofilms were identified and subjected to transposon-mediated mutagenesis. Biofilm-negative mutants of these transformants were shown to have a transposon insertion in the uspA1 gene. Nucleotide sequence analysis revealed that the biofilm-positive transformant T14 contained a hybrid O46E-O35E uspA1 gene, with the N-terminal 155 amino acids being derived from the O46E UspA1 protein. Transformant T14 was also shown to be unable to express the Hag protein, which normally extends from the surface of the M. catarrhalis cell. Introduction of a wild-type O35E hag gene into T14 eliminated its ability to form a biofilm. When the hybrid O46E-O35E uspA1 gene from T14 was used to replace the uspA1 gene of O35E, this transformant strain did not form a biofilm. However, inactivation of the hag gene did allow biofilm formation by strain O35E expressing the hybrid O46E-O35E uspA1 gene product. The Hag protein was shown to have an inhibitory or negative effect on biofilm formation by these M. catarrhalis strains in the crystal violet-based assay.


Sign in / Sign up

Export Citation Format

Share Document