scholarly journals Evaluation of Diffusion Coefficient of Oxygen in Liquid Silver from AC Impedanceof an Electrochemical Cell based on Solid Electrolyte and Molten Silver Electrode

2001 ◽  
Vol 42 (6) ◽  
pp. 1042-1047 ◽  
Author(s):  
Norihiko Fukatsu ◽  
Mitsuhiro Hayashi ◽  
Noriaki Kurita ◽  
Teruo Ohashi
1963 ◽  
Vol 157 (969) ◽  
pp. 461-472 ◽  

1. Bull semen diluted 1/5 or 1/10 respired at the same rate whether the manometers were stationary or shaken. 2. Respirometric experiments using a manometer flask of special shape showed that bull sperm suspensions achieve this result by increasing the effective diffusion coefficient of oxygen in the suspending medium by 900%. 3. The hypothesis is put forward ( a ) that these results are caused by the existence of short-range order, as opposed to disorder, in bull sperm suspensions, even at comparatively low sperm densities (dilution 1/8 to 1/20); ( b ) that this order produces group sperm velocities greater than those of isolated spermatozoa; and ( c ) that as a result, larger volumes of the suspending medium are convected with the ordered sperm groups, causing an augmented ‘diffusion’ of oxygen. 4. This hypothesis was examined by taking photomicrographs of sperm suspensions at different dilutions and temperatures and determining from them the distributions of (i) the distance between pairs of nearest spermatozoa; (ii) the angle of inclination of a sperm head relative to that of the spermatozoon nearest to it; and (iii) the relative position of the nearest spermatozoon. 5. Comparison of the observed distributions and the corresponding random ones showed that the spermatozoa attracted each other, so that transient sperm groups were formed, in which the spermatozoa tended to swim in the same direction. A reduction in temperature or sperm density decreased the sperm order.


1984 ◽  
Vol 246 (1) ◽  
pp. R107-R113 ◽  
Author(s):  
L. D. Homer ◽  
J. B. Shelton ◽  
C. H. Dorsey ◽  
T. J. Williams

The diffusion coefficient of oxygen (D) and the fluorescence quenching coefficient (K') of pyrenebutyric acid (PBA) were measured in sections of rat hamstring muscles. Values of D and K' at temperatures (Tc) of 20, 30, and 40 degrees C were determined and referred to the values in water. In sections cut parallel to the muscle fibers, D = DH2O (0.380 +/- 0.038), whereas in sections cut across the grain of the fibers, D = DH2O (0.985 +/- 0.039). Oxygen diffuses along the length of a muscle fiber over twice as rapidly as it diffuses in directions perpendicular to the long axis of the fiber. This suggests that fibers, myofibrils, or myofilaments offer substantial barriers to the diffusion of oxygen, whereas extracellular space and spaces around fibers or myofibrils or myofilaments offer no more resistance than water to the diffusion of oxygen. Corresponding estimates for K' were K' = K'H2O[0.14 (1 + 0.25 Tc)] and K' = K'H2O[0.21 (1 + 0.25 Tc)] for slices cut parallel to the long axis of muscle fibers and across the long axis, respectively. Standard deviations of K' were 9%.


Microscopy ◽  
2020 ◽  
Vol 69 (4) ◽  
pp. 227-233 ◽  
Author(s):  
Mitsunori Kitta ◽  
Hikaru Sano

Abstract Investigation of solid electrolyte interphases (SEIs) on negative electrode surfaces is essential to improve the stable charge-discharge performance of rechargeable lithium-air batteries (Li-O2 batteries). In this study, a direct investigation of SEI films is conducted using analytical transmission electron microscopy (TEM). A thin Cu specimen is prefabricated for TEM observation and is utilised as a model substrate for SEI formation. The electrochemical cell constructed using dissolved oxygen in the electrolyte exhibits a greater electrochemical overpotential during the Li-metal deposition process than that constructed with a pristine electrolyte. This suggests that different electrochemical passivation features occur in each different electrochemical cell. TEM observation confirms that the surface film formed by O2 dissolute electrolyte is a polycrystalline Li2O film with a thickness of ~5 nm, whereas the film formed by the pristine electrolyte is organic-based, amorphous-like and 20–50 nm thick. The dissolved oxygen molecules are more easily reduced than the components of the electrolyte, leading to the formation of Li2O as a stable passivation SEI film, which is expected to exhibit good charge-discharge features during the operation of the Li-O2 battery.


2020 ◽  
Vol 56 (65) ◽  
pp. 9324-9327 ◽  
Author(s):  
Yasufumi Takahashi ◽  
Tsubasa Yamashita ◽  
Daiko Takamatsu ◽  
Akichika Kumatani ◽  
Takeshi Fukuma

To visualize the electrochemical reactivity and obtain the diffusion coefficient of the anode of lithium-ion batteries, we developed scanning electrochemical cell microscopy (SECCM) in a glovebox.


1966 ◽  
Vol 49 (4) ◽  
pp. 663-679 ◽  
Author(s):  
K. H. Keller ◽  
S. K. Friedlander

The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated.


Author(s):  
Stephen O’Toole ◽  
Nicholas Stevens

Molecular dynamics was used to calculate the diffusion coefficient of oxygen over a temperature range of 900–1700K. The chromite (FeCr2O4) system used consisted of 448 ions in a spinel structure. The spinel consisted of Fe2+ in tetrahedral sites and Cr3+ ions in octahedral sites surrounded by O2− ions. Schottky defects were made in the system by removing 10 oxygen ions, 4 iron ions and 4 chromium ions. The trajectory files from the simulations were examined for oxygen movement via a vacancy hopping mechanism and the mean-squared displacement of oxygen was plotted against time. A linear fit was performed to the plots and Einstein’s relationship was used to derive the diffusion coefficient from the gradient. The diffusion coefficients were then plotted against temperature and an Arrhenius expression was fitted to the trend and compared with the experimental trend calculated by Takada & Adachi.


Sign in / Sign up

Export Citation Format

Share Document