scholarly journals Effect of Post Heat Treatment on the Mechanical Properties of Porous Ti–6Al–4V Alloys Manufactured through Powder Bed Fusion Process

2019 ◽  
Vol 60 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Xue-Zheng Yue ◽  
Hiroshi Fukazawa ◽  
Kazuya Maruyama ◽  
Keiji Matsuo ◽  
Koichi Kitazono
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1067 ◽  
Author(s):  
Florian Huber ◽  
Thomas Papke ◽  
Christian Scheitler ◽  
Lukas Hanrieder ◽  
Marion Merklein ◽  
...  

The aim of this work is to investigate the β-Ti-phase-stabilizing effect of vanadium and iron added to Ti-6Al-4V powder by means of heterogeneous powder mixtures and in situ alloy-formation during laser powder bed fusion (L-PBF). The resulting microstructure was analyzed by metallographic methods, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were characterized by compression tests, both prior to and after heat-treating. Energy dispersive X-ray spectroscopy showed a homogeneous element distribution, proving the feasibility of in situ alloying by LPBF. Due to the β-phase-stabilizing effect of V and Fe added to Ti-6Al-4V, instead of an α’-martensitic microstructure, an α/β-microstructure containing at least 63.8% β-phase develops. Depending on the post L-PBF heat-treatment, either an increased upsetting at failure (33.9%) compared to unmodified Ti-6Al-4V (28.8%), or an exceptional high compressive yield strength (1857 ± 35 MPa compared to 1100 MPa) were measured. The hardness of the in situ alloyed material ranges from 336 ± 7 HV0.5, in as-built condition, to 543 ± 13 HV0.5 after precipitation-hardening. Hence, the range of achievable mechanical properties in dependence of the post-L-PBF heat-treatment can be significantly expanded in comparison to unmodified Ti-6Al-4V, thus providing increased flexibility for additive manufacturing of titanium parts.


2020 ◽  
Vol 10 (10) ◽  
pp. 3401 ◽  
Author(s):  
Iris Raffeis ◽  
Frank Adjei-Kyeremeh ◽  
Uwe Vroomen ◽  
Elmar Westhoff ◽  
Sebastian Bremen ◽  
...  

As researchers continue to seek the expansion of the material base for additive manufacturing, there is a need to focus attention on the Ni–Cu group of alloys which conventionally has wide industrial applications. In this work, the G-NiCu30Nb casting alloy, a variant of the Monel family of alloys with Nb and high Si content is, for the first time, processed via the laser powder bed fusion process (LPBF). Being novel to the LPBF processes, optimum LPBF parameters were determined, and hardness and tensile tests were performed in as-built conditions and after heat treatment at 1000 °C. Microstructures of the as-cast and the as-built condition were compared. Highly dense samples (99.8% density) were achieved after varying hatch distance (80 µm and 140 µm) with scanning speed (550 mm/s–1500 mm/s). There was no significant difference in microhardness between varied hatch distance print sets. Microhardness of the as-built condition (247 HV0.2) exceeded the as-cast microhardness (179 HV0.2.). Tensile specimens built in vertical (V) and horizontal (H) orientations revealed degrees of anisotropy and were superior to conventionally reported figures. Post heat treatment increased ductility from 20% to 31% (V), as well as from 16% to 25% (H), while ultimate tensile strength (UTS) and yield strength (YS) were considerably reduced.


Sign in / Sign up

Export Citation Format

Share Document