scholarly journals NO + CO Reaction on Polycrystalline Palladium Foils with Specific Surface Crystallographic Orientation: A New Approach to Develop Foil Catalysts Based on Texture Control

Author(s):  
Kenta Hayashi ◽  
Satoshi Kameoka ◽  
An-Pang Tsai
Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Olga Brovko ◽  
Irina Palamarchuk ◽  
Konstantin Bogolitsyn ◽  
Nikolay Bogdanovich ◽  
Artem Ivakhnov ◽  
...  

AbstractA new approach to the formation of “fullerene-like” carbon-nitrogen carbogels based on the interpolyelectrolyte complex lignosulfonate-chitosan (IPEC LSNa-CT) was developed. It was established that carbogel maintained the morphology of the precursor complex, i.e. the spherical geometry and the particle size of its main fractions (40–55 nm) were stored in the carbonizate. The influence of pyrolysis (Py) temperature was studied in the range of 500–1000°C on the structure of carbonizate. Carbogels obtained under different processing conditions have a well-developed microporous structure. The specific surface area of carbogels reduced with increasing Py temperature according to their nitrogen content. The maximum specific surface area (438.3 m2g−1) corresponds to the carbogel obtained at 600°C, while the maximum nitrogen content of this sample is 4.4%. The internal porosity of the material and the volume of supermicropores are reduced with increasing Py temperature due to the accumulation of double and triple carbon bonds in the carbogel. Apparently, the structure-forming N-atoms participate in the formation of condensed nitrogen-containing and cyclic structures as a donor of the electron pair and as such they accelerate the carbonization process.


2014 ◽  
Vol 2 (46) ◽  
pp. 19589-19593 ◽  
Author(s):  
Yanna Guo ◽  
Hui Li ◽  
Jin Chen ◽  
Xuejing Wu ◽  
Lei Zhou

A totally novel, extremely easy, much greener and low-cost method has been developed to synthesize TiO2 mesocrystals. These materials are built of TiO2 nanocrystals with similar crystallographic orientation and largely exposed {001} facets. Their unique structure optimizes the relationship between specific surface area, crystallite size and active facets, and therefore leads to superior photocatalytic activity.


2010 ◽  
Vol 97-101 ◽  
pp. 648-651
Author(s):  
Dong Hua Chen ◽  
Yun Ying Fan ◽  
Jin Hu

A fluidized beds method used in the industry for deacidification of the fumed silica has several drawbacks. The present work was intended to develop a simple, rapid and cost-effective method for the deacidification of fumed silica with high specific surface area using microwave technique. The effect of microwave irradiation on the body of the fumed silica has been investigated. The experimental results show that the microwave irradiation technique has been effective in deacidification and suppressing the aggregation process of fumed silica. This new approach may be useful to accelerate the deacidification process and avoid the aggregation growth.


Biosensors ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 433-447
Author(s):  
Caroline Mille ◽  
Dominique Debarnot ◽  
Willy Zorzi ◽  
Benaissa Moualij ◽  
Isabelle Quadrio ◽  
...  

1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


Sign in / Sign up

Export Citation Format

Share Document