scholarly journals Development of High Performance Elastomers with Inorganic Filler. 5. Effects of Inorganic Fillers on Environmental Degradation of Vulcanizates and Mechanical Properties of Thermoplastic Elastomers, and Inorganic Fillers in the Future.

2005 ◽  
Vol 78 (12) ◽  
pp. 467-474 ◽  
Author(s):  
Soji KODAMA
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 614
Author(s):  
Vo Pham Hoang Huy ◽  
Seongjoon So ◽  
Jaehyun Hur

Among the various types of polymer electrolytes, gel polymer electrolytes have been considered as promising electrolytes for high-performance lithium and non-lithium batteries. The introduction of inorganic fillers into the polymer-salt system of gel polymer electrolytes has emerged as an effective strategy to achieve high ionic conductivity and excellent interfacial contact with the electrode. In this review, the detailed roles of inorganic fillers in composite gel polymer electrolytes are presented based on their physical and electrochemical properties in lithium and non-lithium polymer batteries. First, we summarize the historical developments of gel polymer electrolytes. Then, a list of detailed fillers applied in gel polymer electrolytes is presented. Possible mechanisms of conductivity enhancement by the addition of inorganic fillers are discussed for each inorganic filler. Subsequently, inorganic filler/polymer composite electrolytes studied for use in various battery systems, including Li-, Na-, Mg-, and Zn-ion batteries, are discussed. Finally, the future perspectives and requirements of the current composite gel polymer electrolyte technologies are highlighted.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3572
Author(s):  
Andrzej S. Swinarew ◽  
Beata Swinarew ◽  
Tomasz Flak ◽  
Hubert Okła ◽  
Marta Lenartowicz-Klik ◽  
...  

This research aimed to examine the mechanical properties of polycarbonate-based composites filled with both organic and inorganic reinforcements before and after simulated environmental degradation. Series of polycarbonate-based samples were prepared in the form of thin tapes. Their rheological properties were examined. Then, the samples were exposed to artificial environmental conditions. Finally, their rheological properties were examined once more, and the results were compared with those obtained for untreated samples. This paper presents basic research on the application of inorganic fillers to polycarbonate in order to determine the influence of the filler on the behavior of the obtained material. The aim of the work was to determine the usefulness and purpose of using this type of filler in polycarbonates for applications in contact with ultraviolet radiation, especially medical applications.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


PCI Journal ◽  
2008 ◽  
Vol 53 (4) ◽  
pp. 108-130
Author(s):  
Mohsen A. Issa ◽  
Atef A. Khalil ◽  
Shahidul Islam ◽  
Paul D. Krauss

Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


Sign in / Sign up

Export Citation Format

Share Document