scholarly journals There Is Something About Insulin Granules

Diabetes ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2575-2577
Author(s):  
Bart O. Roep
Keyword(s):  
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2279-PUB ◽  
Author(s):  
ROSITA PRIMAVERA ◽  
MIRKO MAGNONE ◽  
DANIELE DI MASCOLO ◽  
ELENA ZOCCHI ◽  
ANGELO DE PASCALE ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ermanno Cordelli ◽  
Paolo Soda ◽  
Giulio Iannello

Abstract Background Biological phenomena usually evolves over time and recent advances in high-throughput microscopy have made possible to collect multiple 3D images over time, generating $$3D+t$$ 3 D + t (or 4D) datasets. To extract useful information there is the need to extract spatial and temporal data on the particles that are in the images, but particle tracking and feature extraction need some kind of assistance. Results This manuscript introduces our new freely downloadable toolbox, the Visual4DTracker. It is a MATLAB package implementing several useful functionalities to navigate, analyse and proof-read the track of each particle detected in any $$3D+t$$ 3 D + t stack. Furthermore, it allows users to proof-read and to evaluate the traces with respect to a given gold standard. The Visual4DTracker toolbox permits the users to visualize and save all the generated results through a user-friendly graphical user interface. This tool has been successfully used in three applicative examples. The first processes synthetic data to show all the software functionalities. The second shows how to process a 4D image stack showing the time-lapse growth of Drosophila cells in an embryo. The third example presents the quantitative analysis of insulin granules in living beta-cells, showing that such particles have two main dynamics that coexist inside the cells. Conclusions Visual4DTracker is a software package for MATLAB to visualize, handle and manually track $$3D+t$$ 3 D + t stacks of microscopy images containing objects such cells, granules, etc.. With its unique set of functions, it remarkably permits the user to analyze and proof-read 4D data in a friendly 3D fashion. The tool is freely available at https://drive.google.com/drive/folders/19AEn0TqP-2B8Z10kOavEAopTUxsKUV73?usp=sharing


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 355
Author(s):  
Ingo Rustenbeck ◽  
Torben Schulze ◽  
Mai Morsi ◽  
Mohammed Alshafei ◽  
Uwe Panten

The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.


2010 ◽  
Vol 299 (2) ◽  
pp. C389-C398 ◽  
Author(s):  
Nizar I. Mourad ◽  
Myriam Nenquin ◽  
Jean-Claude Henquin

Two pathways control glucose-induced insulin secretion (IS) by β-cells. The triggering pathway involves ATP-sensitive potassium (KATP) channel-dependent depolarization, Ca2+ influx, and a rise in the cytosolic Ca2+ concentration ([Ca2+]c), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca2+]c. The underlying mechanisms are unknown. Here, we tested the hypothesis that amplification implicates actin microfilaments. Mouse islets were treated with latrunculin B and cytochalasin B to depolymerize actin or jasplakinolide to polymerize actin. They were then perifused to measure [Ca2+]c and IS. Metabolic amplification was studied during imposed steady elevation of [Ca2+]c by tolbutamide or KCl or by comparing the magnitude of [Ca2+]c and IS changes produced by glucose and tolbutamide. Both actin polymerization and depolymerization augmented IS triggered by all stimuli without increasing (sometimes decreasing) [Ca2+]c, which indicates a predominantly inhibitory function of microfilaments in exocytosis at a step distal to [Ca2+]c increase. When [Ca2+]c was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was facilitated by actin depolymerization and unaffected by polymerization. Both phases of IS were larger in response to high-glucose than to tolbutamide in low-glucose, although triggering [Ca2+]c was lower. This difference in IS, due to amplification, persisted when the IS rate was doubled by actin depolymerization or polymerization. In conclusion, metabolic amplification is rapid and influences the first as well as the second phase of IS. It is a late step of stimulus-secretion coupling, which does not require functional actin microfilaments and could correspond to acceleration of the priming process conferring release competence to insulin granules.


2019 ◽  
Vol 116 (3) ◽  
pp. 314a
Author(s):  
Noah A. Schenk ◽  
Alex J.B. Kreutzberger ◽  
Megan T. Harris ◽  
Catherine A. Doyle ◽  
Patrick Seelheim ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1487
Author(s):  
Michael Müller ◽  
Mathias Glombek ◽  
Jeldrick Powitz ◽  
Dennis Brüning ◽  
Ingo Rustenbeck

In this paper a first model is derived and applied which describes the transport of insulin granules through the cell interior and at the membrane of a beta cell. A special role is assigned to the actin network, which significantly influences the transport. For this purpose, microscopically measured actin networks are characterized and then further ones are artificially generated. In a Cellular Automaton model, phenomenological laws for granule movement are formulated and implemented. Simulation results are compared with experiments, primarily using TIRF images and secretion rates. In this respect, good similarities are already apparent. The model is a first useful approach to describe complex granule transport processes in beta cells, and offers great potential for future extensions. Furthermore, the model can be used as a tool to validate hypotheses and associated mechanisms regarding their effect on exocytosis or other processes. For this purpose, the source code for the model is provided online.


2003 ◽  
Vol 278 (45) ◽  
pp. 44753-44757 ◽  
Author(s):  
Carlos F. Mendez ◽  
Ingo B. Leibiger ◽  
Barbara Leibiger ◽  
Marianne Høy ◽  
Jesper Gromada ◽  
...  

2015 ◽  
Vol 21 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Ştefana Bâlici ◽  
Modeste Wankeu-Nya ◽  
Dan Rusu ◽  
Gheorghe Z. Nicula ◽  
Mariana Rusu ◽  
...  

AbstractTwo polyoxometalates (POMs), synthesized through a self-assembling method, were used in the treatment of streptozotocin (STZ)-induced diabetic rats. One of these nanocompounds [tris(vanadyl)-substituted tungsto-antimonate(III)-anions—POM1] was previously described in the literature, whereas the second [tris-butyltin-21-tungsto-9-antimonate(III)-anions—POM2], was prepared by us based on our original formula. In rats with STZ-induced diabetes treated with POMs (up to a cumulative dose of 4 mg/kg bodyweight at the end of the treatments), statistically significant reduced levels of blood glucose were measured after 3 weeks, as compared with the diabetic control groups (DCGs). Ultrastructural analysis of pancreatic β-cells (including the mean diameter of secretory vesicles and of their insulin granules) in the treated diabetic rats proved the POMs contribute to limitation of cellular degeneration triggered by STZ, as well as to the presence of increased amounts of insulin-containing vesicles as compared with the DCG. The two POMs also showed hepatoprotective properties when ultrastructural aspects of hepatocytes in the experimental groups of rats were studied. Based on our in vivo studies, we concluded that the two POMs tested achieved hypoglycemiant effects by preventing STZ-triggered apoptosis of pancreatic β-cells and stimulation of insulin synthesis.


Sign in / Sign up

Export Citation Format

Share Document