scholarly journals Hyperglycemia Regulates Hypoxia-Inducible Factor-1  Protein Stability and Function

Diabetes ◽  
2004 ◽  
Vol 53 (12) ◽  
pp. 3226-3232 ◽  
Author(s):  
S.-B. Catrina ◽  
K. Okamoto ◽  
T. Pereira ◽  
K. Brismar ◽  
L. Poellinger
2005 ◽  
Vol 202 (11) ◽  
pp. 1493-1505 ◽  
Author(s):  
Holger K. Eltzschig ◽  
Parween Abdulla ◽  
Edgar Hoffman ◽  
Kathryn E. Hamilton ◽  
Dionne Daniels ◽  
...  

Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)–dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1α mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia.


2019 ◽  
Vol 317 (2) ◽  
pp. C270-C276 ◽  
Author(s):  
Jessica Morand ◽  
Anne Briançon-Marjollet ◽  
Emeline Lemarie ◽  
Brigitte Gonthier ◽  
Josiane Arnaud ◽  
...  

Zinc is involved in the expression and function of various transcription factors, including the hypoxia-inducible factor-1 (HIF-1). HIF-1 and its target gene endothelin-1 (ET-1) are activated by intermittent hypoxia (IH), one of the main consequences of obstructive sleep apnea (OSA), and both play a key role in the cardiovascular consequences of IH. Because OSA and IH are associated with zinc deficiency, we investigated the effect of zinc deficiency caused by chelation on the HIF-1/ET-1 pathway and its functional consequences in endothelial cells. Primary human microvascular endothelial cells (HMVEC) were incubated with submicromolar doses of the zinc-specific membrane-permeable chelator N, N, N′, N′-tetrakis(2-pyridylmethyl)-ethylene diamine (TPEN, 0.5 µM) or ET-1 (0.01 µM) with or without bosentan, a dual ET-1-receptor antagonist. HIF-1α expression was silenced by transfection with specific siRNA. Nuclear HIF-1 content was assessed by immunofluorescence microscopy and Western blot. Migratory capacity of HMVEC was evaluated with a wound-healing scratch assay. Zinc chelation by TPEN exposure induced the translocation of the cytosolic HIF-1α subunit of HIF-1 to the nucleus as well as an HIF-1-mediated ET-1 secretion by HMVEC. Incubation with either TPEN or ET-1 increased endothelial wound-healing capacity. Both HIF-1α silencing or bosentan abolished this effect. Altogether, these results suggest that zinc deficiency upregulates ET-1 signaling through HIF-1 activation and stimulates endothelial cell migration, suggesting an important role of zinc in the vascular consequences of IH and OSA mediated by HIF-1-ET- signaling.


2013 ◽  
Vol 25 (2) ◽  
pp. 343 ◽  
Author(s):  
Rina Meidan ◽  
Eyal Klipper ◽  
Yulia Zalman ◽  
Ronit Yalu

The hypoxic microenvironment that occurs in fast-growing tissue such as the corpus luteum (CL) is a major contributor to its ability to survive via the induction of an intricate vascular network. Cellular responses to hypoxia are mediated by hypoxia-inducible factor-1 (HIF-1), an oxygen-regulated transcriptional activator. HIF-1, a heterodimer consisting of a constitutively-expressed β subunit and an oxygen-regulated α subunit, binds to the hypoxia responsive element (HRE) present in the promoter regions of responsive genes. This review summarises evidence for the involvement of hypoxia and HIF-1α in CL development and function. Special emphasis is given to hypoxia-induced, luteal cell-specific expression of multiple genes (vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF-2), prokineticin receptor 2 (PK-R2), stanniocalcin 1 (STC-1) and endothelin 2 (EDN-2) that participate in the angiogenic process during CL formation.


2002 ◽  
Vol 22 (20) ◽  
pp. 7004-7014 ◽  
Author(s):  
Christine C. Hudson ◽  
Mei Liu ◽  
Gary G. Chiang ◽  
Diane M. Otterness ◽  
Dawn C. Loomis ◽  
...  

ABSTRACT Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor containing an inducibly expressed HIF-1α subunit and a constititutively expressed HIF-1β subunit. Under hypoxic conditions, the HIF-1α subunit accumulates due to a decrease in the rate of proteolytic degradation, and the resulting HIF-1α-HIF-1β heterodimers undergo posttranslational modifications that promote transactivation. Recent studies suggest that amplified signaling through phosphoinositide 3-kinase, and its downstream target, mTOR, enhances HIF-1-dependent gene expression in certain cell types. In the present study, we have explored further the linkage between mTOR and HIF-1 in PC-3 prostate cancer cells treated with hypoxia or the hypoxia mimetic agent, CoCl2. Pretreatment of PC-3 cells with the mTOR inhibitor, rapamycin, inhibited both the accumulation of HIF-1α and HIF-1-dependent transcription induced by hypoxia or CoCl2. Transfection of these cells with wild-type mTOR enhanced HIF-1 activation by hypoxia or CoCl2, while expression of a rapamycin-resistant mTOR mutant rendered both HIF-1α stabilization and HIF-1 transactivating function refractory to inhibition by rapamycin. Studies with GAL4-HIF-1α fusion proteins pinpointed the oxygen-dependent degradation domain as a critical target for the rapamycin-sensitive, mTOR-dependent signaling pathway leading to HIF-1α stabilization by CoCl2. These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.


2020 ◽  
Vol 8 ◽  
pp. 232470962094725
Author(s):  
Joseph A. Moore ◽  
Maimon E. Hubbi ◽  
Chenliang Wang ◽  
Yingfei Wang ◽  
Weibo Luo ◽  
...  

Hypoxia-inducible factor-1 (HIF-1) is a key regulator of erythropoiesis. In this article, we report 3 novel mutations, P378S, A385T, and G206C, on the EGLN1 gene encoding the negative HIF-1α regulator prolyl hydroxylase domain-2 (PHD2) in 3 patients with isolated erythrocytosis. These mutations impair PHD2 protein stability and partially reduce PHD2 activity, leading to increased HIF-1α protein levels in cultured cells.


2003 ◽  
Vol 176 (1) ◽  
pp. 95-102 ◽  
Author(s):  
A Martinez ◽  
L Saldise ◽  
MJ Ramirez ◽  
S Belzunegui ◽  
E Zudaire ◽  
...  

Adrenomedullin (AM) immunoreactivity has been found in granules of the glomus (type I) cells of the carotid bodies in rats. The identity of these cells was ascertained by colocalization of immunoreactivities for AM and tyrosine hydroxylase in their cytoplasm. Exposure of freshly isolated carotid bodies to synthetic AM resulted in a concentration- and time-dependent degranulation of glomus cells as measured by dopamine (DA) release. DA release reached a zenith 30 min after exposure to AM (94.2% over untreated controls). At this time-point, the response to AM was similar to the one elicited by 5 min of exposure to 100 mM K+. Nevertheless, injection of 1 micro l 60 nM AM/g body weight into the tail vein of the rats did not induce statistical differences in DA release from the carotid bodies. Exposure of the oxygen-sensitive cell line PC-12 to hypoxia elicited an increase in AM mRNA expression and peptide secretion into serum-free conditioned medium. Previous data have shown that elevation of AM expression under hypoxia is mediated through hypoxia-inducible factor-1, and that exposure of chromaffin cells to AM results in degranulation. All these data suggest that AM is an important autocrine regulator of carotid body function.


Sign in / Sign up

Export Citation Format

Share Document