scholarly journals Role of patatin-like phospholipase domain-containing 3 gene for hepatic lipid content and insulin resistance in diabetes

Author(s):  
Oana P. Zaharia ◽  
Klaus Strassburger ◽  
Birgit Knebel ◽  
Yuliya Kupriyanova ◽  
Yanislava Karusheva ◽  
...  

<a><b>Objective</b></a>: The rs738409(G) single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (<i>PNPLA3</i>) gene associates with increased risk and progression of nonalcoholic fatty liver disease (NAFLD). As the recently-described severe insulin-resistant diabetes (SIRD) cluster specifically relates to NAFLD, this study examined whether this SNP differently associates with hepatic lipid content (HCL) and insulin sensitivity in recent-onset diabetes mellitus. <p><b>Research Design and Methods</b>: A total of 917 participants of the German Diabetes Study underwent genotyping, hyperinsulinemic-euglycemic clamps with stable isotopic tracer dilution and magnetic resonance spectroscopy. </p> <p><b>Results:</b> The G allele associated positively with HCL (β=0.36, p<0.01), independent of age, sex and BMI across the whole cohort, but not in the individual clusters. SIRD exhibited lowest whole-body insulin sensitivity compared to severe insulin-deficient (SIDD), moderate obesity-related (MOD), moderate age-related (MARD) and severe autoimmune diabetes clusters (SAID; all p<0.001). Interestingly, SIRD presented with higher prevalence of the rs738409(G) SNP compared to other clusters and the glucose-tolerant control group (p<0.05). HCL was higher in SIRD [13.6 (5.8;19.1)%] compared to MOD [6.4 (2.1;12.4)%, p<0.05], MARD [3.0 (1.0;7.9)%, p<0.001], SAID [0.4 (0.0;1.5)%, p<0.001] and the glucose tolerant group [0.9 (0.4;4.9)%, p<0.001]. Although the <i>PNPLA3</i> polymorphism did not directly associate with whole-body insulin sensitivity in SIRD, the G allele carriers had higher circulating free fatty acid concentrations and greater adipose-tissue insulin resistance compared to non-carriers (both p<0.001).</p> <b>Conclusions:</b> Members of the severe insulin resistant diabetes cluster are more frequently carriers of the rs738409(G) variant. The SNP-associated adipose-tissue insulin resistance and excessive lipolysis may contribute to their NAFLD.

2020 ◽  
Author(s):  
Oana P. Zaharia ◽  
Klaus Strassburger ◽  
Birgit Knebel ◽  
Yuliya Kupriyanova ◽  
Yanislava Karusheva ◽  
...  

<a><b>Objective</b></a>: The rs738409(G) single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (<i>PNPLA3</i>) gene associates with increased risk and progression of nonalcoholic fatty liver disease (NAFLD). As the recently-described severe insulin-resistant diabetes (SIRD) cluster specifically relates to NAFLD, this study examined whether this SNP differently associates with hepatic lipid content (HCL) and insulin sensitivity in recent-onset diabetes mellitus. <p><b>Research Design and Methods</b>: A total of 917 participants of the German Diabetes Study underwent genotyping, hyperinsulinemic-euglycemic clamps with stable isotopic tracer dilution and magnetic resonance spectroscopy. </p> <p><b>Results:</b> The G allele associated positively with HCL (β=0.36, p<0.01), independent of age, sex and BMI across the whole cohort, but not in the individual clusters. SIRD exhibited lowest whole-body insulin sensitivity compared to severe insulin-deficient (SIDD), moderate obesity-related (MOD), moderate age-related (MARD) and severe autoimmune diabetes clusters (SAID; all p<0.001). Interestingly, SIRD presented with higher prevalence of the rs738409(G) SNP compared to other clusters and the glucose-tolerant control group (p<0.05). HCL was higher in SIRD [13.6 (5.8;19.1)%] compared to MOD [6.4 (2.1;12.4)%, p<0.05], MARD [3.0 (1.0;7.9)%, p<0.001], SAID [0.4 (0.0;1.5)%, p<0.001] and the glucose tolerant group [0.9 (0.4;4.9)%, p<0.001]. Although the <i>PNPLA3</i> polymorphism did not directly associate with whole-body insulin sensitivity in SIRD, the G allele carriers had higher circulating free fatty acid concentrations and greater adipose-tissue insulin resistance compared to non-carriers (both p<0.001).</p> <b>Conclusions:</b> Members of the severe insulin resistant diabetes cluster are more frequently carriers of the rs738409(G) variant. The SNP-associated adipose-tissue insulin resistance and excessive lipolysis may contribute to their NAFLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Timea Kurdiova ◽  
Miroslav Balaz ◽  
Zuzana Kovanicova ◽  
Erika Zemkova ◽  
Martin Kuzma ◽  
...  

AimAfamin is a liver-produced glycoprotein, a potential early marker of metabolic syndrome. Here we investigated regulation of afamin in a course of the metabolic disease development and in response to 3-month exercise intervention.MethodsWe measured whole-body insulin sensitivity (euglycemic hyperinsulinemic clamp), glucose tolerance, abdominal adiposity, hepatic lipid content (magnetic resonance imaging/spectroscopy), habitual physical activity (accelerometers) and serum afamin (enzyme-linked immunosorbent assay) in 71 middle-aged men with obesity, prediabetes and newly diagnosed type 2 diabetes. Effects of 3-month exercise were investigated in 22 overweight-to-obese middle-aged individuals (16M/6F).ResultsPrediabetes and type 2 diabetes, but not obesity, were associated with increased serum afamin (p&lt;0.001). Afamin correlated positively with hepatic lipids, fatty liver index and liver damage markers; with parameters of adiposity (waist circumference, %body fat, adipocyte diameter) and insulin resistance (fasting insulin, C-peptide, HOMA-IR; p&lt;0.001 all). Moreover, afamin negatively correlated with whole-body insulin sensitivity (M-value/Insulin, p&lt;0.001). Hepatic lipids and fasting insulinemia were the most important predictors of serum afamin, explaining &gt;63% of its variability. Exercise-related changes in afamin were paralleled by reciprocal changes in insulinemia, insulin resistance and visceral adiposity. No significant change in hepatic lipid content was observed.ConclusionsSubjects with prediabetes and type 2 diabetes had the highest serum afamin levels. Afamin was more tightly related to hepatic lipid accumulation, liver damage and insulin resistance than to obesity.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. eabj1696
Author(s):  
Charles Brenner

Yoshino et al. (Reports, 11 June 2021, p. 1224) have reported that nicotinamide mononucleotide (NMN) increases muscle insulin sensitivity in prediabetic women. However, the 13 women who received NMN had hepatic lipid content of 6.3 ± 1.2%, whereas the 12 in the placebo group had 14.8 ± 2.0% (P = 0.003). Given that a target of NMN is liver fat clearance, this was not an effectively randomized trial.


2020 ◽  
Author(s):  
Feifan Guo ◽  
Yuguo Niu ◽  
Haizhou Jiang ◽  
Hanrui Yin ◽  
Fenfen Wang ◽  
...  

Abstract The current study aimed to investigate the role of endoplasmic reticulum aminopeptidase 1 (ERAP1), a novel hepatokine, in whole-body glucose metabolism. Here, we found that hepatic ERAP1 levels were increased in insulin-resistant leptin-receptor-mutated (db/db) and high-fat diet (HFD)-fed mice. Consistently, hepatic ERAP1 overexpression attenuated skeletal muscle (SM) insulin sensitivity, whereas knockdown ameliorated SM insulin resistance. Furthermore, serum and hepatic ERAP1 levels were positively correlated, and recombinant mouse ERAP1 or conditioned medium with high ERAP1 content (CM-ERAP1) attenuated insulin signaling in C2C12 myotubes, and CM-ERAP1 or HFD-induced insulin resistance was blocked by ERAP1 neutralizing antibodies. Mechanistically, ERAP1 reduced ADRB2 expression and interrupted ADRB2-dependent signaling in C2C12 myotubes. Finally, ERAP1 inhibition via global knockout or the inhibitor thimerosal improved insulin sensitivity. Together, ERAP1 is a hepatokine that impairs SM and whole-body insulin sensitivity, and its inhibition might provide a therapeutic strategy for diabetes, particularly for those with SM insulin resistance.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Haya Al-Sulaiti ◽  
Ilhame Diboun ◽  
Maha V. Agha ◽  
Fatima F. S. Mohamed ◽  
Stephen Atkin ◽  
...  

Abstract Background Obesity is associated with an increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). However, some obese individuals maintain their insulin sensitivity and exhibit a lower risk of associated comorbidities. The underlying metabolic pathways differentiating obese insulin sensitive (OIS) and obese insulin resistant (OIR) individuals remain unclear. Methods In this study, 107 subjects underwent untargeted metabolomics of serum samples using the Metabolon platform. Thirty-two subjects were lean controls whilst 75 subjects were obese including 20 OIS, 41 OIR, and 14 T2DM individuals. Results Our results showed that phospholipid metabolites including choline, glycerophosphoethanolamine and glycerophosphorylcholine were significantly altered from OIS when compared with OIR and T2DM individuals. Furthermore, our data confirmed changes in metabolic markers of liver disease, vascular disease and T2DM, such as 3-hydroxymyristate, dimethylarginine and 1,5-anhydroglucitol, respectively. Conclusion This pilot data has identified phospholipid metabolites as potential novel biomarkers of obesity-associated insulin sensitivity and confirmed the association of known metabolites with increased risk of obesity-associated insulin resistance, with possible diagnostic and therapeutic applications. Further studies are warranted to confirm these associations in prospective cohorts and to investigate their functionality.


2004 ◽  
Vol 287 (4) ◽  
pp. E799-E803 ◽  
Author(s):  
Gina B. Di Gregorio ◽  
Rickard Westergren ◽  
Sven Enerback ◽  
Tong Lu ◽  
Philip A. Kern

FOXC2 is a winged helix/forkhead transcription factor involved in PKA signaling. Overexpression of FOXC2 in the adipose tissue of transgenic mice protected against diet-induced obesity and insulin resistance. We examined the expression of FOXC2 in fat and muscle of nondiabetic humans with varying obesity and insulin sensitivity. There was no relation between body mass index (BMI) and FOXC2 mRNA in either adipose or muscle. There was a strong inverse relation between adipose FOXC2 mRNA and insulin sensitivity, using the frequently sampled intravenous glucose tolerance test ( r = −0.78, P < 0.001). However, there was no relationship between muscle FOXC2 and any measure of insulin sensitivity. To separate insulin resistance from obesity, we examined FOXC2 expression in pairs of subjects who were matched for BMI but who were discordant for insulin sensitivity. Compared with insulin-sensitive subjects, insulin-resistant subjects had threefold higher levels of adipose FOXC2 mRNA ( P = 0.03). In contrast, muscle FOXC2 mRNA expression was no different between insulin-resistant and insulin-sensitive subjects. There was no association of adipose or muscle FOXC2 mRNA with either circulating or adipose-secreted TNF-α, IL-6, leptin, adiponectin, or non-esterified fatty acids. Thus adipose FOXC2 is more highly expressed in insulin-resistant subjects, and this effect is independent of obesity. This association between FOXC2 and insulin resistance may be related to the role of FOXC2 in PKA signaling.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Lakshmi Arivazhagan ◽  
Henry Ruiz ◽  
Robin Wilson ◽  
Laura Frye ◽  
Ravichandran Ramasamy ◽  
...  

Introduction: Obesity is a major global health problem, with over one third of adults in the US classified as obese. Obesity often leads to a state of insulin resistance (IR), type 2 diabetes (T2D) and its complications. We previously showed that the receptor for advanced glycation end products (RAGE) and its ligands contribute to the pathogenesis of obesity and IR, as whole body and adipocyte-specific Ager (gene encoding RAGE) deleted mice fed a high fat diet (HFD) were significantly protected from weight gain and IR. Here, we hypothesize that myeloid RAGE contributed to IR upon HFD feeding. Methods: We generated mice with myeloid-specific (MDR) LyzMCre(+/+).Ager flox/flox and adipocyte and myeloid-specific (Double Knockouts) AdipoQCre(-/+)LyzMCre(+/+).Ager flox/flox deletion of Ager and LysMCre mice were used as control. Mice were fed either standard chow (LFD) or HFD (60% kcal/fat) for 3 months starting at age 6 weeks. Mice were assessed for body mass and composition, glucose and insulin sensitivity and whole body glucose metabolism by hyperinsulinemic-euglycemic clamp studies. Results: After 3 months HFD, there were no significant differences in body mass, body composition, food intake, energy expenditure and physical activity of the MDR mice vs. controls. Similar findings were observed in mice fed LFD. However, surprisingly, in HFD-fed mice, insulin tolerance tests and hyperinsulinemic-euglycemic clamp studies showed decreased insulin sensitivity and insulin action in the MDR vs. control mice, indicating that the MDR mice were more insulin resistant. The Double Knockout (myeloid/adipocyte) Cre (+) mice were more glucose tolerant and insulin sensitive compared to MDR mice, showing that deletion of Ager in the adipocytes rescued the adverse effects of Ager deletion in myeloid cells. Conclusions: Myeloid Ager protects from IR in mice fed HFD. Furthermore, in MDR mice, concomitant adipocyte-specific deletion of Ager rescues these mice from IR and, at the same time, reduces HFD-induced adiposity. The mechanisms underlying these findings are under active investigation.


Author(s):  
Nida Tanataweethum ◽  
Allyson Trang ◽  
Chaeeun Lee ◽  
Jhalak Mehta ◽  
Neha Patel ◽  
...  

Abstract The development of hepatic insulin resistance (IR) is a critical factor in developing type 2 diabetes (T2D), where insulin fails to inhibit hepatic glucose production but retains its capacity to promote hepatic lipogenesis. Improving insulin sensitivity can be effective in preventing and treating T2D. However, selective control of glucose and lipid synthesis has been difficult. It is known that excess white adipose tissue is detrimental to insulin sensitivity, whereas brown adipose tissue transplantation can restore it in diabetic mice. However, challenges remain in our understanding of liver-adipose communication because the confounding effects of hypothalamic regulation of metabolic function cannot be ruled out in previous studies. There is a lack of in vitro models that use primary cells to study cellular-crosstalk under insulin resistant conditions. Building upon our previous work on the microfluidic primary liver and adipose organ-on-chips, we report for the first time the development of integrated insulin resistant liver-adipose (white and brown) organ-on-chip. The design of the microfluidic device was carried out using computational fluid dynamics; the experimental studies were conducted by carrying out detailed biochemical analysis RNA-seq analysis on both cell types. Further, we tested the hypothesis that brown adipocytes regulated both hepatic insulin sensitivity and lipogenesis. Our results show effective co-modulation of hepatic glucose and lipid synthesis through a platform for identifying potential therapeutics for IR and diabetes.


2009 ◽  
Vol 201 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Camilla Alexanderson ◽  
Elias Eriksson ◽  
Elisabet Stener-Victorin ◽  
Malin Lönn ◽  
Agneta Holmäng

Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor β1 (Tgfβ1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFβ1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor δ (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfβ1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood.


1997 ◽  
Vol 273 (5) ◽  
pp. E859-E867 ◽  
Author(s):  
M. Hettiarachchi ◽  
S. Chalkley ◽  
S. M. Furler ◽  
Y.-S. Choong ◽  
M. Heller ◽  
...  

To clarify roles of amylin, we investigated metabolic responses to rat amylin-(8—37), a specific amylin antagonist, in normal and insulin-resistant, human growth hormone (hGH)-infused rats. Fasting conscious rats were infused with saline or hGH, each with and without amylin-(8—37) (0.125 μmol/h), over 5.75 h. At 3.75 h, a hyperinsulinemic (100 mU/l) clamp with bolus 2-deoxy-d-[3H]glucose and [14C]glucose was started. hGH infusion led to prompt (2- to 3-fold) basal hyperamylinemia ( P < 0.02) and hyperinsulinemia. Amylin-(8—37) reduced plasma insulin ( P < 0.001) and enhanced several measures of whole body and muscle insulin sensitivity ( P < 0.05) in both saline- and hGH-infused rats. Amylin-(8—37) corrected hGH-induced liver insulin resistance, increased basal plasma triglycerides and lowered plasma nonesterified fatty acids in both groups, and reduced muscle triglyceride and total long-chain acyl-CoA content in saline-treated rats ( P < 0.05). In isolated soleus muscle, amylin-(8—37) blocked amylin-induced inhibition of glycogen synthesis but had no effect in the absence of amylin. Thus 1) hyperamylinemia accompanies insulin resistance induced by hGH infusion; 2) amylin-(8—37) increases whole body and muscle insulin sensitivity and consistently reduces basal insulin levels in normal and hGH-induced insulin-resistant rats; and 3) amylin-(8—37) elicits a significant alteration of in vivo lipid metabolism. These findings support a role of amylin in modulating insulin action and suggest that this could be mediated by effects on lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document