scholarly journals Muscular G9a regulates muscle-liver-fat axis by musclin under overnutrition in female mice

Author(s):  
Ada Admin ◽  
Wenquan Zhang ◽  
Dong Yang ◽  
Yangmian Yuan ◽  
Chong Liu ◽  
...  

Crosstalk among different tissues and organs is a hotspot in metabolic research. Recent studies have revealed the regulatory roles of a number of myokines in metabolism. Here, we report that female mice muscle-specific lacking histone methylase G9a (<i>Ehmt2</i><sup>Ckmm </sup>KO<i> </i>or <i>Ehmt2</i><sup>HSA</sup> KO) are resistant to high-fat-diet (HFD) induced obesity and hepatic steatosis. Furthermore, we identified significantly upregulated circulating level of musclin, a myokine, in HFD-fed <i>Ehmt2</i><sup>Ckmm </sup>KO or <i>Ehmt2</i><sup>HSA</sup> KO female mice. Similarly, upregulated musclin was observed in mice injected with two structurally different inhibitors for G9a methylase activity, BIX01294 and A366. Moreover, injection of recombinant full-length musclin or its functional core domain, inhibited the HFD-induced obesity and hepatic steatosis in wildtype female and male mice. Mechanistically, G9a methylase activity-dependently regulated muscular musclin level by binding to its promoter, also by regulating p-Foxo1/Foxo1 level <i>in vivo</i> and <i>in vitro</i>. Collectively, these data suggested a critical role for G9a in the ‘muscle-liver-fat’ metabolic axis, at least for female mice. Musclin may serve as a potential therapeutic candidate for obesity and associated diseases.

2020 ◽  
Author(s):  
Ada Admin ◽  
Wenquan Zhang ◽  
Dong Yang ◽  
Yangmian Yuan ◽  
Chong Liu ◽  
...  

Crosstalk among different tissues and organs is a hotspot in metabolic research. Recent studies have revealed the regulatory roles of a number of myokines in metabolism. Here, we report that female mice muscle-specific lacking histone methylase G9a (<i>Ehmt2</i><sup>Ckmm </sup>KO<i> </i>or <i>Ehmt2</i><sup>HSA</sup> KO) are resistant to high-fat-diet (HFD) induced obesity and hepatic steatosis. Furthermore, we identified significantly upregulated circulating level of musclin, a myokine, in HFD-fed <i>Ehmt2</i><sup>Ckmm </sup>KO or <i>Ehmt2</i><sup>HSA</sup> KO female mice. Similarly, upregulated musclin was observed in mice injected with two structurally different inhibitors for G9a methylase activity, BIX01294 and A366. Moreover, injection of recombinant full-length musclin or its functional core domain, inhibited the HFD-induced obesity and hepatic steatosis in wildtype female and male mice. Mechanistically, G9a methylase activity-dependently regulated muscular musclin level by binding to its promoter, also by regulating p-Foxo1/Foxo1 level <i>in vivo</i> and <i>in vitro</i>. Collectively, these data suggested a critical role for G9a in the ‘muscle-liver-fat’ metabolic axis, at least for female mice. Musclin may serve as a potential therapeutic candidate for obesity and associated diseases.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1696-1696
Author(s):  
Pierre-Christian Violet ◽  
Ifechukwude Ebenuwa ◽  
Stacey Chung ◽  
Jeffrey Atkinson ◽  
Danny Manor ◽  
...  

Abstract Objectives Hepato-steatosis (HS) due to obesity is now the most common cause of chronic liver disease in the Americas and Western Europe. The only means to prevent disease is avoidance of obesity. α-Tocopherol at doses of 800 I.U. daily was reported to have partial treatment effects for NASH. Because alpha tocopherol is a fat-soluble vitamin, we hypothesized that excess fat in liver, as found in HS, could act unintentionally sequester vitamin E, thereby altering its normal physiology and contributing to development of NASH. Using oral and intravenous deuterated tocopherols, evidence showing HS altered a-tocopherol physiology was reported based on pharmacokinetics studies in obese women with HS. Here we further tested the sequestration hypothesis in vitro, and in vivo. Methods In vitro, we investigated effects of fat on intracellular vitamin E localization. Control human and mouse hepatocytes and hepatocytes pre-loaded with fat were incubated with fluorescent α-tocopherol (BDP-α-tocopherol). In vivo experiments were performed using mice fed a high fat diet with different vitamin E doses. Results Compared to controls, fat- loaded cells contained more a-tocopherol, and BDP-a-tocopherol was specifically localized into intracellular fat droplets. In cells incubated with BDP a-tocopherol, we found that fat loading decreased a-tocopherol release. Induced expression of TPP, which mediates vitamin E intracellular disposition under normal conditions, was not observed in fat loaded cells, further confirming vitamin E was trapped in fat. Livers of mice fed high fat diet had more vitamin E compared to controls. By further increasing vitamin E content of the high fat diet, we observed a reduction in liver size and liver fat in the high vitamin E group. Using a mouse metabolic chamber, we observed a slight reduction of oxygen consumption rate in the high vitamin E group compared to controls. Conclusions Considered together, these findings imply that fat in the liver may produce unrecognized hepatic vitamin E sequestration, which could drive liver disease. These results are consistent with the possibility that increased vitamin E intake might, if begun at an early stage, restore vitamin E physiology, potentially decreasing or preventing progression of HS to NASH. Funding Sources NIH intramural program (DK053213–14).


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kang Zhou ◽  
Jianing Zhang ◽  
Chang Liu ◽  
Lijuan Ou ◽  
Fan Wang ◽  
...  

Abstract Background Sanziguben polysaccharides (SZP) are large amounts of classical Chinese medicines from Sanziguben (SZGB). Moreover, SZGB is a widely applied compound prescription for diabetic nephropathy (DN) treatment, but the role is still unclear. This study initially explores the mechanism of SZP in the treatment of DN. Methods The high-fat diet plus streptozotocin injections were used to replicate the DN models in male C57BL/6 mice. DN mice were divided into five groups: DN mice, DN mice treated with SZP(1.01 or 2.02 g/kg), DN mice treated with SZGB decoction(4.7 g/kg), and DN mice treated with metformin (300 mg/kg). HG and LPS plus TNFα stimulated human tubule epithelial (HK-2) cells to establish an in vitro model and treated with SZP (100 or 200 μg/mL). Results SZP was found to comprise sugar, protein, and uronic acid. Furthermore, SZP alleviated the progression of inflammation in vivo and in vitro by inhibiting the expression of NF-κB. Conclusions NF-κB plays a critical role in the development of DN induced by STZ and HG. Furthermore, SZP can attenuate the NF-κB‐mediated progression of diabetic nephropathy, improve DN through anti-inflammation.


2020 ◽  
pp. jlr.RA120000737
Author(s):  
Thibaut Bourgeois ◽  
Antoine Jalil ◽  
Charles Thomas ◽  
Charlene Magnani ◽  
Naig Le Guern ◽  
...  

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


2017 ◽  
Vol 43 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Yan Bai ◽  
Zhenli Su ◽  
Hanqi Sun ◽  
Wei Zhao ◽  
Xue Chen ◽  
...  

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.


2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


Author(s):  
Meng Gu ◽  
Chong Liu ◽  
TianYe Yang ◽  
Ming Zhan ◽  
Zhikang Cai ◽  
...  

The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.


2021 ◽  
Author(s):  
Qiuhua Yang ◽  
Jiean Xu ◽  
Qian Ma ◽  
Zhiping Liu ◽  
Yaqi Zhou ◽  
...  

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


2020 ◽  
Vol 39 (8) ◽  
pp. 1005-1018 ◽  
Author(s):  
I Cinar ◽  
Z Halici ◽  
B Dincer ◽  
B Sirin ◽  
E Cadirci

The presence of 5-HT7r’s in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r’s, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r’s by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r’s are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document