scholarly journals Interplay Between Synthesis Conditions, Crystal Structure, Morphology and OER Activity of AgFeO2 Delafossite Materials

Author(s):  
Doğan ÇİRMİ ◽  
Özkan GÖRMEZ ◽  
Barış SAÇLI ◽  
Uğur ÇAĞLAYAN ◽  
Muharrem KUNDURACI
2016 ◽  
Vol 603 ◽  
pp. 363-370 ◽  
Author(s):  
Asmaa Eltayeb ◽  
Rajani K. Vijayaraghavan ◽  
Anthony P. McCoy ◽  
Joseph Cullen ◽  
Stephen Daniels ◽  
...  

2014 ◽  
Vol 16 (1) ◽  
pp. 49-52
Author(s):  
Yelfira Sari ◽  
Muhamad Nasir ◽  
Chandra Risdian ◽  
Syukri Syukri

Sintesis nanofiber komposit Zn-PVDF kopolimer dengan metoda elektrospinning telah berhasil dilakukan. Proses pembuatan nanofiber komposit serta  morfologi yang terbentuk dipengaruhi oleh penambahan Zn-asetat dengan perubahan diameter rata-rata serat dari 357,13 nm menjadi 777,24 nm. Analisis FTIR menunjukkan bahwa struktur kristal nanofiber komposit Zn-PVDF kopolimer didominasi oleh strukturβ-phase, dengan bilangan gelombang 1190,08 cm-1 dan 487,99 cm-1 untuk struktur α-phase dan 1404,18 cm-1; 1280,73 cm-1; 1074,35 cm-1; 881,47 cm-1; dan 840,96 cm-1 untuk struktur β-phase.Kata kunci :nanofiber komposit, Zn-PVDF kopolimer komposit, elektrospinning,kristal struktur, morfologi, diameter fiber The fabrication of Zn-PVDF copolymer nanofiber composite has been investigated in this research study by using electrospinning method. Fabrication and morphology of nanofiber composite is influenced by the addition of Zn-acetate. The average diameter of nanofiber composites increase with an addition of Zn-acetate, from 357,13 to 777,24nm. FTIRanalysisshowedthat thecrystalstructure ofPVDFnanofiberis dominatedby β-phase , thewave number 1190,08 cm-1 and 487,99 cm-1 for α-phase structure and 1404,18cm-1; 1280,73cm-1; 1074,35cm-1; 881,47cm-1and840,96cm-1 for β-phase structure respectively.Key words : nanofiber composite, Zn-PVDF copolymer composite, electrospinning, crystal structure,  morphology, fiber diameter


2018 ◽  
Vol 15 (2) ◽  
pp. 187-199
Author(s):  
Jelena Purenovic ◽  
Nedeljko Ducic ◽  
Branko Matovic ◽  
Milovan Purenovic

Modified porous alumo-silicate ceramics, alloyed with magnesium and microalloyed with aluminum, belongs to modern multifunctional ceramic materials. Microalloying has led to important changes in dielectric and electrical properties of ceramics, such as dielectric constant and electrical resistance. These changes are conditioned by the microstructural properties of modified porous ceramics. The obtained results have shown the unity of the influence of composition, structure, morphology and application of microalloyed multifunctional alumosilicate ceramics on electrophysical properties. Microstructural investigations have shown that this type of ceramics has an amorphous-crystal structure, which causes important changes in its electrical properties and affects its activity. Therefore the ceramics can be considered as an active dielectric. A correlation between microstructural properties and structurally sensitive, i.e. electrophysical properties of microalloyed multifunctional alumo-silicate ceramics, was confirmed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1331 ◽  
Author(s):  
Hyunsu Park ◽  
Tomoyo Goto ◽  
Sunghun Cho ◽  
Soo Wohn Lee ◽  
Masato Kakihana ◽  
...  

This study addresses the effects of annealing temperatures (up to 500 °C) on the crystal structure, morphology, and optical properties of peroxo groups (–O–O–) containing titanate nanotubes (PTNTs). PTNTs, which possess a unique tubular morphology of layered-compound-like hydrogen titanate structure (approximately 10 nm in diameter), were synthesized using peroxo-titanium (Ti–O–O) complex ions as a precursor under very mild conditions—temperature of 100 °C and alkali concentration of 1.5 M—in the precursor solution. The nanotubular structure was dismantled by annealing and a nanoplate-like structure within the range of 20–50 nm in width and 100–300 nm in length was formed at 500 °C via a nanosheet structure by decreasing the specific surface area. Hydrogen titanate-based structures of the as-synthesized PTNTs transformed directly into anatase-type TiO2 at a temperature above 360 °C due to dehydration and phase transition. The final product, anatase-based titania nanoplate, was partially hydrogen titanate crystal in nature, in which hydroxyl (–OH) bonds exist in their interlayers. Therefore, the use of Ti–O–O complex ions contributes to the improved thermal stability of hydrogen titanate nanotubes. These results show a simple and environmentally friendly method that is useful for the synthesis of functional nanomaterials for applications in various fields.


2014 ◽  
Vol 979 ◽  
pp. 200-203 ◽  
Author(s):  
Pannipa Chaya ◽  
Tula Jutarosaga ◽  
Wandee Onreabroy

The strontium hexaferrite (SrFe12O19) and Co-substituted strontium hexaferrite (SrCoFe11O19) were prepared by ceramic method. The milled mixture of Fe2O3, SrCO3 and CoO powders were calcined at 1100°C and pellets sintered at 1300°C in air. The crystal structure, morphology and magnetic properties of samples have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM), respectively. The crystal structure of SrFe12O19 was hexaferrite with the crystallite size and the lattice constants a and c of 59.6 nm, 5.8 Å, and 23.0 Å, respectively. Also, the crystal structure of SrCoFe11O19 was hexaferrite with the crystallite size and the lattice constants a and c of 63.7 nm, 5.9 Å and 23.0 Å, respectively. The morphology of obtained samples changed from hexagonal rods to discs shape and grain sizes increased with the increase of doped Co in SrFe12O19. SrFe12O19 with the coercive force (Hc) of 2,133 Oe was classified as hard ferrite magnetic. While, Co-substituted strontium hexaferrite (SrCoFe11O19) was soft ferrite magnetic with coercive force of 64 Oe. Results indicated that magnetic properties of samples such as hard ferrite magnetic and soft ferrite magnetic showed great dependence on the cobalt additive in strontium.


2016 ◽  
Vol 71 (8) ◽  
pp. 925-933 ◽  
Author(s):  
Sandra Schönegger ◽  
Teresa S. Ortner ◽  
Klaus Wurst ◽  
Gunter Heymann ◽  
Hubert Huppertz

AbstractA lead borate with the composition Pb6B12O21(OH)6 was synthesized through a hydrothermal synthesis, using lead metaborate in combination with sodium nitrate and potassium nitrate. The compound crystallizes in the trigonal, non-centrosymmetric space group P32 (no. 145) with the lattice parameters a = 1176.0(4), c = 1333.0(4) pm, and V = 0.1596(2) nm3. Interestingly, the data of Pb6B12O21(OH)6 correct the structure of a literature known lead borate with the composition “Pb6B11O18(OH)9”. For the latter compound, nearly identical lattice parameters of a = 1176.91(7) and c = 1333.62(12) pm were reported, possessing a crystal structure, in which the localization and refinement of one boron atom was obviously overlooked. The structure of Pb6B12O21(OH)6 is built up from trigonal planar BO3 and tetrahedral BO4 groups forming complex chains. The Pb2+ cations are located between neighboring polyborate chains. The here reported compound Pb6B12O21(OH)6 and “Pb6B11O18(OH)9” were, however, produced under different synthesis conditions. While “Pb6B11O18(OH)9” was synthesized via a hydrothermal synthesis including ethylenediamine and acetic acid, the here reported lead borate Pb6B12O21(OH)6 could be obtained under moderate hydrothermal conditions (240°C) without the addition of organic reagents.


Sign in / Sign up

Export Citation Format

Share Document