Streptococcus mutans Biofilm Formation and Cell Viability on Polymer-infiltrated Ceramic and Yttria-stabilized Polycrystalline Zirconium Dioxide Ceramic

2019 ◽  
Vol 44 (6) ◽  
pp. E271-E278 ◽  
Author(s):  
MA Bottino ◽  
SMB Pereira ◽  
M Amaral ◽  
NVM Milhan ◽  
CA Pereira ◽  
...  

SUMMARY Objective: The aim of this study was to investigate the biofilm formation and cell viability of a polymer-infiltrated ceramic (PIC) and an yttria-stabilized polycrystalline zirconium dioxide ceramic (Y-TZP). The null hypothesis was that there would be no difference in biofilm formation and cell viability between the materials. Methods and Materials: Streptococcus mutans biofilm was analyzed with scanning electron microscopy (SEM), confocal laser scanning microscopy, and colony counting (colony-forming units/mL). The cell viability (fibroblasts) of both materials was measured with 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium) (MTT) test. Roughness measurements were also performed. Results: The PIC displayed higher roughness but showed similar colony-forming units and biovolume values to those of Y-TZP. SEM showed a higher amount of adhered fibroblasts on the PIC surface on the first day and similar amounts on both materials after seven days. Moreover, the materials were biocompatible with human fibroblasts. Conclusion: PIC and Y-TZP are biocompatible and present the same characteristics for biofilm formation; therefore, they are indicated for indirect restorations and implant abutments.

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 474
Author(s):  
Inés Pradal ◽  
Jaime Esteban ◽  
Arancha Mediero ◽  
Marta García-Coca ◽  
John Jairo Aguilera-Correa

Mycobacterium chimaera is an opportunistic slowly growing non-tuberculous mycobacteriumof increasing importance due to the outbreak of cases associated with contaminated 3T heater-cooler device (HCD) extracorporeal membrane oxygenator (ECMO). The aim of this study was to evaluate the effect of pre-treating a surface with a Methylobacterium sp. CECT 7180 extract to inhibit the M. chimaera ECMO biofilm as well as of the treatment after different dehydration times. Surface adherence, biofilm formation and treatment effect were evaluated by estimating colony-forming units (CFU) per square centimeter and characterizing the amount of covered surface area, thickness, cell viability, and presence of intrinsic autofluorescence at different times using confocal laser scanning microscopy and image analysis. We found that exposing a surface to the Methylobacterium sp. CECT 7180 extract inhibited M. chimaera ECMO biofilm development. This effect could be result of the effect of Methylobacterium proteins, such as DNaK, trigger factor, and xanthine oxidase. In conclusion, exposing a surface to the Methylobacteriumsp. extract inhibits M. chimaera ECMO biofilm development. Furthermore, this extract could be used as a pre-treatment prior to disinfection protocols for equipment contaminated with mycobacteria after dehydration for at least 96 h.


2006 ◽  
Vol 72 (9) ◽  
pp. 6277-6287 ◽  
Author(s):  
Mizuho Motegi ◽  
Yuzo Takagi ◽  
Hideo Yonezawa ◽  
Nobuhiro Hanada ◽  
Jun Terajima ◽  
...  

ABSTRACT Streptococcus mutans, the major pathogen responsible for dental caries in humans, is a biofilm-forming bacterium. In the present study, 17 different pulsed-field gel electrophoresis patterns of genomic DNA were identified in S. mutans organisms isolated clinically from whole saliva. The S. mutans isolates showed different abilities to form biofilms on polystyrene surfaces in semidefined minimal medium cultures. Following cultivation in a flow cell system in tryptic soy broth with 0.25% sucrose and staining using a BacLight LIVE/DEAD system, two strains, designated FSC-3 and FSC-4, showed the greatest and least, respectively, levels of biofilm formation when examined with confocal laser scanning microscopy. Further, image analyses of spatial distribution and architecture were performed to quantify the merged green (live cells) and red (dead cells) light. The light intensity of the FSC-3 biofilm was greater than that of the FSC-4 biofilm in the bottom area but not in the top area. S. mutans whole-genome array results showed that approximately 3.8% of the genes were differentially expressed in the two strains, of which approximately 2.2%, including bacitracin transport ATP-binding protein gene glrA and a BLpL-like putative immunity protein gene, were activated in FSC-3. In addition, about 1.6% of the genes, including those associated with phosphotransferase system genes, were repressed. Analyses of the glrA-deficient strains and reverse transcription-PCR confirmed the role of the gene in biofilm formation. Differential assessment of biofilm-associated genes in clinical strains may provide useful information for understanding the morphological development of streptococcal biofilm, as well as for colonization of S. mutans.


2015 ◽  
Vol 25 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Zhiyan He ◽  
Jingping Liang ◽  
Zisheng Tang ◽  
Rui Ma ◽  
Huasong Peng ◽  
...  

Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called autoinducers (AIs). Among Gram-negative and Gram-positive bacteria, AI-2 synthesized by the LuxS enzyme is widespread. The aim of this study was to evaluate the effect of QS <i>luxS</i> gene on initial biofilm formation by <i>Streptococcus mutans</i>. The bacterial cell surface properties, including cell hydrophobicity (bacterial adherence to hydrocarbons) and aggregation, which are important for initial adherence during biofilm development, were investigated. The biofilm adhesion assay was evaluated by the MTT method. The structures of the 5-hour biofilms were observed by using confocal laser scanning microscopy, and QS-related gene expressions were investigated by real-time PCR. The <i>luxS</i> mutant strain exhibited higher biofilm adherence and aggregation, but lower hydrophobicity than the wild-type strain. The confocal laser scanning microscopy images revealed that the wild-type strain tended to form smaller aggregates with uniform distribution, whereas the <i>luxS</i> mutant strain aggregated into distinct clusters easily discernible in the generated biofilm. Most of the genes examined were downregulated in the biofilms formed by the <i>luxS</i> mutant strain, except the <i>gtfB </i>gene. QS <i>luxS</i> gene can affect the initial biofilm formation by <i>S. mutans.</i>


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yalan Deng ◽  
Yingming Yang ◽  
Bin Zhang ◽  
Hong Chen ◽  
Yangyu Lu ◽  
...  

AbstractStreptococcus mutans (S. mutans) is generally regarded as a major contributor to dental caries because of its ability to synthesize extracellular polysaccharides (EPS) that aid in the formation of plaque biofilm. The VicRKX system of S. mutans plays an important role in biofilm formation. The aim of this study was to investigate the effects of vicK gene on specific characteristics of EPS in S. mutans biofilm. We constructed single-species biofilms formed by different mutants of vicK gene. Production and distribution of EPS were detected through atomic force microscopy, scanning electron microscopy and confocal laser scanning microscopy. Microcosmic structures of EPS were analyzed by gel permeation chromatography and gas chromatography-mass spectrometry. Cariogenicity of the vicK mutant was assessed in a specific pathogen-free rat model. Transcriptional levels of cariogenicity-associated genes were confirmed by quantitative real-time polymerase chain reaction. The results showed that deletion of vicK gene suppressed biofilm formation as well as EPS production, and EPS were synthesized mostly around the cells. Molecular weight and monosaccharide components underwent evident alterations. Biofilms formed in vivo were sparse and contributed a decreased degree of caries. Moreover, expressional levels of genes related to EPS synthesis were down-regulated, except for gtfB. Our report demonstrates that vicK gene enhances biofilm formation and subsequent caries development. And this may due to its regulations on EPS metabolism, like synthesis or microcosmic features of EPS. This study suggests that vicK gene and EPS can be considered as promising targets to modulate dental caries.


2006 ◽  
Vol 188 (8) ◽  
pp. 2983-2992 ◽  
Author(s):  
Zezhang T. Wen ◽  
Henry V. Baker ◽  
Robert A. Burne

ABSTRACT Streptococcus mutans, the primary etiological agent of human dental caries, has developed multiple mechanisms to colonize and form biofilms on the tooth surface. The brpA gene codes for a predicted surface-associated protein with apparent roles in biofilm formation, autolysis, and cell division. In this study, we used two models to further characterize the biofilm-forming characteristics of a BrpA-deficient mutant, strain TW14. Compared to those of the parent strain, UA159, TW14 formed long chains and sparse microcolonies on hydroxylapatite disks but failed to accumulate and form three-dimensional biofilms when grown on glucose as the carbohydrate source. The biofilm formation defect was also readily apparent by confocal laser scanning microscopy when flow cells were used to grow biofilms. When subjected to acid killing at pH 2.8 for 45 min, the survival rate of strain TW14 was more than 1 log lower than that of the wild-type strain. TW14 was at least 3 logs more susceptible to killing by 0.2% hydrogen peroxide than was UA159. The expression of more than 200 genes was found by microarray analysis to be altered in cells lacking BrpA (P < 0.01). These results suggest that the loss of BrpA can dramatically influence the transcriptome and significantly affects the regulation of acid and oxidative stress tolerance and biofilm formation in S. mutans, which are key virulence attributes of the organism.


2020 ◽  
Vol 47 (4) ◽  
pp. 397-405
Author(s):  
Seung-Hwan Ong ◽  
Jongsoo Kim ◽  
Dong-Heon Baek ◽  
Seunghoon Yoo

The aim of this study is to compare cariogenic characteristics of fluoride-sensitive <i>Streptococcus mutans</i> [fluoride-sensitive (FS) <i>S. mutans</i> ] and fluoride-resistant <i>Streptococcus mutans</i> [fluoride-resistant (FR) <i>S. mutans</i>] in the presence of sucrose, and to evaluate its effect on cariogenic biofilm formation. <i>S. mutans</i> ATCC 25175 was continuously cultured in trypticase soy broth (TSB) containing NaF (70 ppm) for 40 days to generate FR <i>S. mutans</i> . FS and FR <i>S. mutans</i> were inoculated in TSB with or without 2% sucrose, and optical density and pH were measured every hour. An oral biofilm was formed using saliva bacteria and analyzed through confocal laser scanning microscopy and CFU count. Finally, the expression of glucosyltransferases genes of both <i>S. mutans</i> was investigated through RT-PCR. FR <i>S. mutans</i> exhibited slower growth and lower acidogenicity in the presence of sucrose compared to FS <i>S. mutans</i> . Both cariogenic and single species biofilm formation was lower in the presence of FR <i>S. mutans</i> , along with reduced number of bacteria. FR <i>S. mutans</i> showed significantly low levels of gtfB, gtfC, and gtfD expression compared to FS <i>S. mutans</i> . On the basis of results, FR <i>S. mutans</i> may be less virulent in the induction of dental caries.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


Sign in / Sign up

Export Citation Format

Share Document