scholarly journals RETRACTED: Discoidin Domain Receptor 1 Contributes to the Survival of Lung Fibroblast in Idiopathic Pulmonary Fibrosis

2006 ◽  
Vol 168 (3) ◽  
pp. 866-877 ◽  
Author(s):  
Wataru Matsuyama ◽  
Masaki Watanabe ◽  
Yuko Shirahama ◽  
Hideo Mitsuyama ◽  
Ikkou Higashimoto ◽  
...  
2020 ◽  
Vol 21 (2) ◽  
pp. 524 ◽  
Author(s):  
Marina R. Hadjicharalambous ◽  
Mark A. Lindsay

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by excessing scarring of the lungs leading to irreversible decline in lung function. The aetiology and pathogenesis of the disease are still unclear, although lung fibroblast and epithelial cell activation, as well as the secretion of fibrotic and inflammatory mediators, have been strongly associated with the development and progression of IPF. Significantly, long non-coding RNAs (lncRNAs) are emerging as modulators of multiple biological processes, although their function and mechanism of action in IPF is poorly understood. LncRNAs have been shown to be important regulators of several diseases and their aberrant expression has been linked to the pathophysiology of fibrosis including IPF. This review will provide an overview of this emerging role of lncRNAs in the development of IPF.


2006 ◽  
Vol 7 (1) ◽  
Author(s):  
Angela Trovato-Salinaro ◽  
Elisa Trovato-Salinaro ◽  
Marco Failla ◽  
Claudio Mastruzzo ◽  
Valerio Tomaselli ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Dong Leng ◽  
Xiaoxi Huang ◽  
Jiawen Yi ◽  
Hongying Zhao ◽  
Yuhui Zhang

Background. Idiopathic pulmonary fibrosis (IPF), the most common interstitial lung disease, arises from transforming growth factor beta 1- (TGFβ1-) induced aberrant fibroproliferation in response to epithelial injury. The TGFβ1 antagonists—hyaluronidases (HYALs)—have been used to clinically treat pulmonary fibrosis. This study focused on characterizing the effect of HYAL1, the main enzyme in hyaluronan degradation, on human lung fibroblast proliferation and apoptosis, and elucidating its potential underlying mechanism of action. Methods. We first performed microarray data mining of previously published gene expression datasets to identify key gene signatures in IPF lung tissues. HYAL1 expression levels in IPF and normal lung tissues were then characterized using immunohistochemistry followed by real-time quantitative reverse transcription-PCR (qRT-PCR) and western blot analysis on isolated fibroblasts from fresh lung tissues of IPF and healthy donors. A human fetal lung fibroblast HFL-1 cell line, which was used in place of primary lung fibroblasts, was used to assess the proliferative or apoptotic effects associated with lentiviral-induced HYAL1 overexpression using CCK-8 cell proliferation assay and Annexin V-APC staining. The identification of potentially associated molecular pathways was performed using microarray analysis followed by qRT-PCR and western blot analysis. Results. Lung tissue microarray data mining and immunohistochemistry revealed significantly downregulation of HYAL1 in IPF lung tissue. However, HYAL1 expression level in IPF fibroblasts was significantly upregulated at the mRNA level, but not altered at the protein level. HYAL1 overexpression in HFL-1 fibroblasts reduced fibroproliferation modestly but did not promote apoptosis. In addition, HYAL1 overexpression led to concomitant transcription factor downregulation, bone morphogenetic protein receptor 2 (BMPR2) signaling activation, but had no effect on TGFβ receptor 2 (TGFβR2) signaling. Conclusions. We showed that HYAL1 overexpression could prevent HFL-1 fibroproliferation. Furthermore, our findings suggest that transcriptional regulators and BMP receptor signaling may be involved in HYAL1 modulation in IPF therapy.


2019 ◽  
Vol 244 (9) ◽  
pp. 770-780 ◽  
Author(s):  
Xuefeng Xu ◽  
Sa Luo ◽  
Biyun Li ◽  
Huaping Dai ◽  
Jinglan Zhang

Interleukin (IL)-25 is shown to potentiate type-2 immunity and contribute to chronic airway inflammation and remodeling in allergic airway diseases. However, the role of IL-25 in idiopathic pulmonary fibrosis (IPF), dominated by nonatopic type-2 immunity, still remains largely unclear. Herein, we detected the expression levels of IL-25 and IL-17BR (IL-25’s receptor) by using lung tissue samples gained from IPF patients and normal subjects. Also, by directly intranasal (IN) instillation of IL-25 to mice, we examined the potential roles and mechanisms of IL-25 in the development of lung fibrosis. Furthermore, we tested whether IL-25 can directly activate human lung fibroblast by in vitro cell culture. Immunohistochemical, Western blot, and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the mRNA and protein levels of IL-25 and IL-17BR are significantly higher in IPF patients when compared with normal controls. Intranasal instillation of IL-25 to mice markedly induces the expressions of alveolar IL-5 and IL-13. Furthermore, immunohistochemical analysis showed that the main components of the extracellular matrix including collagen I, collagen III and fibronectin are notably induced by IL-25 instillation in lung parenchyma (especially in alveolar epithelial cells [AECs]). Also, IL-25 potentiates the expression of connective tissue growth factor (CTGF) in AECs and the recruitment of lung fibroblast. By using Cell Counting Kit-8 and EDU incorporation assay, we found that IL-25 markedly enhances the proliferation of lung fibroblast. Finally, IL-25 potentiates fibroblast to produce several fibrogenic genes including collagen I/III, fibronectin, CTGF, α smooth muscle (α-SMA) and tissue inhibitor of metalloproteinase (TIMP)-1 as determined by RT-PCR assay. Collectively, we concluded that IL-25 is increased in IPF lungs and contributes to lung fibrosis by directly mediating AECs/fibroblast activation. Impact statement Our work focused on alveolar epithelial cells (AECs)-derived type-2 cytokine (interleukin [IL]-25) in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We showed that IL-25 and IL-17BR (IL-25’s receptor) is upregulated in lung tissues (especially in AECs and lung fibroblasts) of IPF patients and contributes to lung fibrosis by directly activating lung fibroblasts and modulating epithelial–mesenchymal transition (EMT) of AECs. We suggest that IL-25 may be one of the master switches hidden in the milieu of abnormal epithelial–mesenchymal crosstalk. Treatment targeting IL-25 may be the potential and novel method for IPF patients.


Thorax ◽  
2016 ◽  
Vol 71 (Suppl 3) ◽  
pp. A32.1-A32 ◽  
Author(s):  
A Pasini ◽  
OJ Brand ◽  
G Jenkins ◽  
AJ Knox ◽  
L Pang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marina R. Hadjicharalambous ◽  
Benoit T. Roux ◽  
Eszter Csomor ◽  
Carol A. Feghali-Bostwick ◽  
Lynne A. Murray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document