scholarly journals IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts

2019 ◽  
Vol 244 (9) ◽  
pp. 770-780 ◽  
Author(s):  
Xuefeng Xu ◽  
Sa Luo ◽  
Biyun Li ◽  
Huaping Dai ◽  
Jinglan Zhang

Interleukin (IL)-25 is shown to potentiate type-2 immunity and contribute to chronic airway inflammation and remodeling in allergic airway diseases. However, the role of IL-25 in idiopathic pulmonary fibrosis (IPF), dominated by nonatopic type-2 immunity, still remains largely unclear. Herein, we detected the expression levels of IL-25 and IL-17BR (IL-25’s receptor) by using lung tissue samples gained from IPF patients and normal subjects. Also, by directly intranasal (IN) instillation of IL-25 to mice, we examined the potential roles and mechanisms of IL-25 in the development of lung fibrosis. Furthermore, we tested whether IL-25 can directly activate human lung fibroblast by in vitro cell culture. Immunohistochemical, Western blot, and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the mRNA and protein levels of IL-25 and IL-17BR are significantly higher in IPF patients when compared with normal controls. Intranasal instillation of IL-25 to mice markedly induces the expressions of alveolar IL-5 and IL-13. Furthermore, immunohistochemical analysis showed that the main components of the extracellular matrix including collagen I, collagen III and fibronectin are notably induced by IL-25 instillation in lung parenchyma (especially in alveolar epithelial cells [AECs]). Also, IL-25 potentiates the expression of connective tissue growth factor (CTGF) in AECs and the recruitment of lung fibroblast. By using Cell Counting Kit-8 and EDU incorporation assay, we found that IL-25 markedly enhances the proliferation of lung fibroblast. Finally, IL-25 potentiates fibroblast to produce several fibrogenic genes including collagen I/III, fibronectin, CTGF, α smooth muscle (α-SMA) and tissue inhibitor of metalloproteinase (TIMP)-1 as determined by RT-PCR assay. Collectively, we concluded that IL-25 is increased in IPF lungs and contributes to lung fibrosis by directly mediating AECs/fibroblast activation. Impact statement Our work focused on alveolar epithelial cells (AECs)-derived type-2 cytokine (interleukin [IL]-25) in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We showed that IL-25 and IL-17BR (IL-25’s receptor) is upregulated in lung tissues (especially in AECs and lung fibroblasts) of IPF patients and contributes to lung fibrosis by directly activating lung fibroblasts and modulating epithelial–mesenchymal transition (EMT) of AECs. We suggest that IL-25 may be one of the master switches hidden in the milieu of abnormal epithelial–mesenchymal crosstalk. Treatment targeting IL-25 may be the potential and novel method for IPF patients.

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1398
Author(s):  
Takahiro Sakai ◽  
Hidetsugu Takagaki ◽  
Noriyuki Yamagiwa ◽  
Michio Ui ◽  
Shinichi Hatta ◽  
...  

Lung fibrosis is the primary pathology in idiopathic pulmonary fibrosis and is considered to result from an increase in reactive oxygen species (ROS) levels in alveolar epithelial cells. However, the exact mechanism underlying lung fibrosis remains unclear and there is no effective therapy. The hydroxyl radical (•OH) has the strongest oxidizing potential among ROS. Recently, •OH localized to the cytoplasm (cyto •OH) was reported to induce cellular senescence, while mitochondria-localized •OH (mt •OH) was reported to induce apoptosis. We developed the cyto •OH- and mt •OH-scavenging antioxidants TA293 and mitoTA293 to evaluate the effects of cyto •OH and mt •OH in a bleomycin (BLM)-induced pulmonary fibrosis model. Treatment of BLM-induced pulmonary fibrosis mice with TA293 suppressed the induction of cellular senescence and fibrosis, as well as inflammation in the lung, but mitoTA293 exacerbated these. Furthermore, in BLM-stimulated primary alveolar epithelial cells, TA293 suppressed the activation of the p-ATMser1981/p-p53ser15/p21, p-HRI/p-eIF2ser51/ATF4/p16, NLRP3 inflammasome/caspase-1/IL-1β/IL1R/p-p38 MAPK/p16, and p21 pathways and the induction of cellular senescence. However, mitoTA293 suppressed the induction of mitophagy, enhanced the activation of the NLRP3 inflammasome/caspase-1/IL1β/IL1R/p-p38 MAPK/p16 and p21 pathways, and exacerbated cellular senescence, inflammation, and fibrosis. Our findings may help develop new strategies to treat idiopathic pulmonary fibrosis.


2019 ◽  
Vol 54 (2) ◽  
pp. 1802441 ◽  
Author(s):  
Christina Morse ◽  
Tracy Tabib ◽  
John Sembrat ◽  
Kristina L. Buschur ◽  
Humberto Trejo Bittar ◽  
...  

A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis.We investigated IPF pathogenesis using single-cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs.IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs.Co-localisation and causal modelling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest that SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Liang ◽  
Yanhua Chang ◽  
Jing Liu ◽  
Yan Yu ◽  
Wancheng Qiu ◽  
...  

Pulmonary fibrosis is a kind of interstitial lung disease with progressive pulmonary scar formation, leading to irreversible loss of lung functions. The TGF-β1/Smad signaling pathway plays a key role in fibrogenic processes. It is associated with the increased synthesis of extracellular matrix, enhanced proliferation of fibroblasts, and transformation of alveolar epithelial cells into interstitial cells. We investigated P-Rex1, a PIP3-Gβγ–dependent guanine nucleotide exchange factor (GEF) for Rac, for its potential role in TGF-β1–induced pulmonary fibrosis. A high expression level of P-Rex1 was identified in the lung tissue of patients with pulmonary fibrosis than that from healthy donors. Using the P-Rex1 knockdown and overexpression system, we established a novel player of P-Rex1 in mouse lung fibroblast migration. P-Rex1 contributed to fibrogenic processes in lung fibroblasts by targeting the TGF-β type Ⅱ receptor (TGFβR2). The RNA-seq analysis for expression profiling confirmed the modulation of P-Rex1 in cell migration and the involvement of P-Rex1 in TGF-β1 signaling. These results identified P-Rex1 as a signaling molecule involved in TGF-β1–induced pulmonary fibrosis, suggesting that P-Rex1 may be a potential target for pulmonary fibrosis treatment.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 83 ◽  
Author(s):  
Francesco Salton ◽  
Maria Volpe ◽  
Marco Confalonieri

Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial–mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158367 ◽  
Author(s):  
Supparerk Disayabutr ◽  
Eun Kyung Kim ◽  
Seung-Ick Cha ◽  
Gary Green ◽  
Ram P. Naikawadi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Benedikt Jäger ◽  
Benjamin Seeliger ◽  
Oliver Terwolbeck ◽  
Gregor Warnecke ◽  
Tobias Welte ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive disease harboring significant morbidity and mortality despite recent advances in therapy. Regardless of disease severity acute exacerbations (IPF-AEs) may occur leading to considerable loss of function and are the leading cause of death in IPF. Histologic features of IPF-AE are very similar to acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the role of the NLRP3 inflammasome in IPF and IPF-AE. Bronchoalveolar lavage (BAL) cells were sampled from patients with IPF (n = 32), IPF-AE (n = 10), ARDS (n = 7) and healthy volunteers (HV, n = 37) and the NLRP3-inflammasome was stimulated in-vitro. We found the NLRP3 inflammasome to be hyper-inducible in IPF compared to HV with increased IL-1ß and pro-IL-1ß levels on ELISA upon stimulation as well as increased caspase-1 activity measured by caspase-1p20 immunoblotting. In IPF-AE, IL-1ß was massively elevated to an extent similar to ARDS. To evaluate potential mechanisms, we co-cultured BAL cells with radiated A549 cells (a model to simulate apoptotic alveolar epithelial cells), which led to increased NLRP3 mRNA expression and increased caspase-1 dependent IL-1ß production. In the presence of a reactive oxygen species (ROS) inhibitor (diphenyleneiodonium) and a cathepsin B inhibitor (E64D), NLRP3 expression was suppressed indicating that induction of NLRP3 activation following efferocytosis of apoptotic A549 cells is mediated via ROS and cathepsin-B. In summary, we present evidence of involvement of the NLRP3 inflammasome-caspase pathway in the pathogenesis of IPF-AE, similarly to ARDS, which may be mediated by efferocytosis of apoptotic alveolar epithelial cells in IPF.


2019 ◽  
Vol 10 (9) ◽  
Author(s):  
Ji Eon Kim ◽  
Hye-Jin Kim ◽  
Jae Woo Jung ◽  
Dae-Geun Song ◽  
Dasomi Park ◽  
...  

Abstract Reactive oxygen species (ROS) regulate cell fate, although signaling molecules that regulate ROS hormesis remain unclear. Here we show that transmembrane 4 L six family member 5 (TM4SF5) in lung epithelial cells induced the alternatively spliced CD44v8-10 variant via an inverse ZEB2/epithelial splicing regulatory proteins (ESRPs) linkage. TM4SF5 formed complexes with the cystine/glutamate antiporter system via TM4SF5- and CD44v8-10-dependent CD98hc plasma-membrane enrichment. Dynamic TM4SF5 binding to CD98hc required CD44v8-10 under ROS-generating inflammatory conditions. TM4SF5 and CD44v8-10 upregulated cystine/glutamate antiporter activity and intracellular glutathione levels, leading to ROS modulation for cell survival. Tm4sf5-null mice exhibited attenuated bleomycin-induced pulmonary fibrosis with lower CD44v8-10 and ESRPs levels than wild-type mice. Primary mouse alveolar epithelial cells (AECs) revealed type II AECs (AECII), but not type I, to adapt the TM4SF5-mediated characteristics, suggesting TM4SF5-mediated AECII survival following AECI injury during idiopathic pulmonary fibrosis (IPF). Thus, the TM4SF5-mediated CD44v8-10 splice variant could be targeted against IPF.


Sign in / Sign up

Export Citation Format

Share Document