scholarly journals Effect of Medium Basicity Refining Slag on the Cleanliness of Al-killed Steel

2021 ◽  
Vol 61 (12) ◽  
pp. 2882-2888
Author(s):  
Huixiang Yu ◽  
Guangyuan Qiu ◽  
Jiaming Zhang ◽  
Xinhua Wang
Keyword(s):  
2016 ◽  
Vol 43 (8) ◽  
pp. 607-615 ◽  
Author(s):  
H. Yu ◽  
J. Xu ◽  
J. Zhang ◽  
X. Wang
Keyword(s):  

2018 ◽  
Vol 58 (7) ◽  
pp. 1232-1241 ◽  
Author(s):  
Yang Li ◽  
Changyong Chen ◽  
Zhouhua Jiang ◽  
Meng Sun ◽  
Hao Hu ◽  
...  

2011 ◽  
Vol 217-218 ◽  
pp. 1174-1179
Author(s):  
Yang Li ◽  
Zhou Hua Jiang ◽  
Shi You Yin ◽  
Ying Zhuang ◽  
Ming Li

The effect of the refining slag composition on the total oxygen content and inclusions in steel was investigated in 100 t UHP Electric Furnace – LF – Billet CC process. The test steel was 77B hard wire steel and Si-Mn alloy was used as the deoxidizer. Three types slag were used in the industrial tests, which including CaO-CaF2, CaO-CaF2 adding CaC and CaO-Al2O3 refining slag. The results shown that the lowest total oxygen contents of rolled bar can be gained using the CaO-CaF2 refining slag adding CaC, which is 0.0036%, while the total oxygen contents of rolled bar using CaO-Al2O3 refining slag is higher a little than the heats using CaO-CaF2 refining slag. The CaO-SiO2 and CaO-Al2O3-SiO2 compound inclusions with the size of about 5 μm are the main inclusions in the heats refining by the CaO-CaF2 refining slag in the rolled bar, but the pure, indeformable Al2O3 inclusion can also be found with the size of about 10 μm. The CaO-Al2O3-SiO2 and Al2O3-SiO2-MnO compound inclusions are the main inclusions in the heats refining by the CaO-CaF2-CaC refining slag, but most of the inclusion shape is irregular with bigger size of about 10 μm. Similar with the heat using CaO-CaF2 refining slag, the pure Al2O3 inclusion with edge angle can be found in the rolled bar. The inclusions in the rolled bar treated by CaO-Al2O3 refining slag are CaO-Al2O3-SiO2 compound inclusions, most of which are nearly globular shape with the relative small size of about 5 μm. All of the inclusions in rolled bar lie on the low melting zone in the CaO-Al2O3-SiO2 ternary phase diagram in the heats using CaO-Al2O3 refining slag. The similar condition appeared on the most of the inclusions in the heats using CaO-CaF2 and CaO-CaF2 refining slag adding CaC, while part of which are lied on the high melting zone. Therefore, considering of the plastic deformation ability, the CaO-Al2O3 refining slag is the best slag for the melting process of hard wire steel.


2012 ◽  
Vol 602-604 ◽  
pp. 90-95
Author(s):  
Min Zhang ◽  
Jian Hua Zeng ◽  
Xing Di Yang ◽  
Yao Xian Zeng

To accurately control the Si content and ensure the function of slag refining in high aluminum steel, the direction and limits of reduction reaction for SiO2 were analyzed based on the thermodynamics. In addition, the thermodynamic prediction model of multi-element slag was studied. Then, a slag activity prediction model was established based on the coexistence theory. Using the model, the suitable ladle slag composition for high aluminum steel was calculated.


2019 ◽  
Vol 38 (2019) ◽  
pp. 760-766
Author(s):  
Yang Liu ◽  
Jing Li ◽  
Jinpeng Ge ◽  
Dingli Zheng

AbstractBy laboratory slag/steel reaction equilibrim experiments, the viriation of oxygen content, inclusion compositions and inclusion sizes were studied. The effect of acid slag treatment on the transition mechanisms of D-type inclusions and the precipitation of TiN inclusions in GCr15 bearing steel were explored. The obtained results showed that the dominant inclusions in steel were plastic and smaller Al2O3-SiO2-MnO. The melting point were lower than 1400°C treated by the acid refining slag of 35.1%CaO-15%Al2O3-43.9%SiO2-6%MgO and there was no TiN found. The evolution of MgO·Al2O3 inclusions is: MgO·Al2O3→ MgO·Al2O3·SiO2·MnO→ Al2O3·SiO2·MnO. Mg and Al from MgO·Al2O3 inclusions were displaced by [Si] and [Mn] in steel liquid , and formation of plastic Al2O3-SiO2-MnO inclusions finally, whose compositions distribution were uniform. Mg and Si, Mn were complementary in inclusions as to the spatial distribution.


2020 ◽  
Vol 7 (8) ◽  
pp. 200704
Author(s):  
Zhongyu Zhao ◽  
Junxue Zhao ◽  
Zexin Tan ◽  
Boqiao Qu ◽  
Yaru Cui

It was taken as typical steelmaking fluorine-containing slag systems with the remelting electroslag, continuous casting mould flux and refining slag. The volatilization behaviour of each slag system was analysed by thermogravimetric (TG) and mass spectrometry (MS) detection. The results showed that the remelting electroslag volatilized significantly above 1300°C and the volatiles were mainly CaF 2 , MgF 2 with a small amount of SiF 4 and AlF 3 ; the continuous casting mould flux volatilization was divided into two stages, in the first stage (500°C∼800°C), CaF 2 and Na 2 O reacted to form NaF, and in the second stage (greater than 1200°C), the CaF 2 evaporation was highlighted; for CaF 2 -CaO-based refining slag, the volatilization was the most significant at the eutectic point 84% CaF 2 –16% CaO, and the volatility can be reduced by adding 5% SiO 2 . This research will be guiding significance for the composition and performance control of fluorine-containing slag and metallurgical environmental protection in the steelmaking process.


2016 ◽  
Vol 57 (2) ◽  
pp. 109-116 ◽  
Author(s):  
O. Yu. Sheshukov ◽  
I. V. Nekrasov ◽  
M. A. Mikheenkov ◽  
D. K. Egiazar’yan ◽  
L. A. Ovchinnikova ◽  
...  

2014 ◽  
Vol 216 ◽  
pp. 267-272 ◽  
Author(s):  
Erika Ardelean ◽  
Marius Ardelean ◽  
Teodor Hepuț ◽  
Florin Drăgoi

The existence of gases in the solid metals (hydrogen and nitrogen) assumes the presence of these gases in metals even before solidification, respectively in the elaboration, secondary treatment and casting phases. Usually, great amounts of gases dissolved in steels can be detected, between 3.5-8ppm for hydrogen and 0.02-0.03% for nitrogen, respectively. There are also cases when the purpose is to alloy with nitrogen, this being the case of austenitic stainless steels where the nitrogen content can reach 0.5% using ferrochromium or ferromanganese alloyed with nitrogen in 3-5.5 %. The main method of removing these gases is bubbling with inert gases and /or treating the steel in a vacuum facility. The paper presents a study regarding increasing the removal efficiency of nitrogen from the liquid steel by changing the bubbling parameters (flow, pressure, duration) but also the basicity of the refining slag. The equations of the regression surface and the identified fields are of a real help for the technologists, allowing quick decisions but they are also important for the quality of the metallic products [.


2013 ◽  
Vol 634-638 ◽  
pp. 42-46
Author(s):  
Yuan She ◽  
Jian Tao Ju ◽  
Zhi Yuan Jiao ◽  
Zhao Hui Zhang

In order to find out a method of computation on the viscosity of CaF2-SiO2-Al2O3-CaO-MgO slag system, which is accurate, rapid and convenient, a systematic study has been carried out. The refining slag samples have been made by the method of rotation-regression-orthogonal combination design during the test. When the temperature of the flux of the samples were 1600°C~1400°C, the experiment was performed by internal rotating cylinder method involving a spindle with the RTW-10 flux physical properties measuring apparatus in graphite crucible per 50°C, meanwhile, the viscosity of slag system were estimated by thermodynamic software FactSage per 50°C. Then, according to the viscosity results of calculation at 1600°C, the viscosity calculation equation was established, which was the relation of the mass fraction of every components and the value of the slag viscosity. Furthermore, the interaction of two components on the influence of the viscosity of slag was discussed.


Sign in / Sign up

Export Citation Format

Share Document