scholarly journals The Multifaceted Effects of Gut Microbiota on the Immune System of the Intestinal Mucosa

Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 583-594
Author(s):  
Takehiro Hirano ◽  
Hiroshi Nakase

The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.

2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


Author(s):  
William D Miller ◽  
Robert Keskey ◽  
John C Alverdy

Abstract Although sepsis has been characterized as a dysregulated immune response to an ongoing or suspected infection, the role of the microbiome as a key influencer of the septic response is emerging. The unavoidable disruption of the microbiome while treating sepsis with antibiotics can itself result in immune system dysregulation, further exacerbating the course and outcome of sepsis. Alterations in the gut microbiome as a result of sepsis and its treatment have been implicated in the organ dysfunction typical of sepsis across a wide variety of tissues including the lung, kidney and brain. A number of microbiota directed interventions are currently under investigation in the setting of sepsis including fecal transplant, the administration of dietary fiber in enteral feeding products and the use of antibiotic scavengers that are directed at attenuating the effects of antibiotics on the gut microbiota while allowing them to concentrate at the primary sites of infection. Taken together, the emerging role of the gut microbiome in sepsis touches various elements of the pathophysiology of sepsis and its treatment, and provides yet another reason to consider the judicious use of antibiotics via antibiotic stewardship programs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miao Wu ◽  
Jiawei Bai ◽  
Chengtai Ma ◽  
Jie Wei ◽  
Xianjin Du

Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.


2021 ◽  
Vol 22 (14) ◽  
pp. 7671
Author(s):  
Nayla Munawar ◽  
Khansa Ahsan ◽  
Khalid Muhammad ◽  
Aftab Ahmad ◽  
Munir A. Anwar ◽  
...  

Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jaeho Kim ◽  
Heung Kyu Lee

An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bolei Li ◽  
Tao Gong ◽  
Yu Hao ◽  
Xuedong Zhou ◽  
Lei Cheng

The past two decades witnessed a revolution in our understanding of host–microbiota interactions that led to the concept of the super-organism consisting of a eukaryotic part and a prokaryotic part. Owing to the critical role of gut microbiota in modulating the host immune system, it is not beyond all expectations that more and more evidence indicated that the shift of gut microbiota influenced responses to numerous forms of cancer immunotherapy. Therapy targeting gut microbiota is becoming a promising strategy to improve cancer immunotherapy. In this review, we discuss the role of the gut microbiota in response to cancer immunotherapy, the mechanisms that the gut microbiota influences cancer immunotherapy, and therapeutic strategies targeting gut microbiota to improve cancer immunotherapy.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4891
Author(s):  
Roghayeh Shahbazi ◽  
Hamed Yasavoli-Sharahi ◽  
Nawal Alsadi ◽  
Nafissa Ismail ◽  
Chantal Matar

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


2020 ◽  
Vol 7 (5) ◽  
pp. 192100 ◽  
Author(s):  
Yuqi Wu ◽  
Yufei Zheng ◽  
Yanan Chen ◽  
Gongwen Chen ◽  
Huoqing Zheng ◽  
...  

Gut microbial communities play vital roles in the modulation of many insects' immunity, including Apis mellifera . However, little is known about the interaction of Apis cerana gut bacteria and A. cerana immune system. Here in this study, we conducted a comparison between germ-free gut microbiota deficient (GD) workers and conventional gut community (CV) workers, to reveal the possible impact of gut microbiota on the expression of A. cerana antimicrobial peptides and immune regulate pathways. We also test whether A. cerana gut microbiota can strengthen host resistance to Nosema ceranae . We find that the expression of apidaecin , abaecin and hymenoptaecin were significantly upregulated with the presence of gut bacteria, and JNK pathway was activated; in the meanwhile, the existence of gut bacteria inhibited the proliferation of Nosema ceranae . These demonstrated the essential role of A. cerana gut microbiota to host health and provided critical insight into the honeybee host–microbiome interaction.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 69 ◽  
Author(s):  
Alessio Fasano

Improved hygiene leading to reduced exposure to microorganisms has been implicated as one possible cause for the recent “epidemic” of chronic inflammatory diseases (CIDs) in industrialized countries. That is the essence of the hygiene hypothesis that argues that rising incidence of CIDs may be, at least in part, the result of lifestyle and environmental changes that have made us too “clean” for our own good, so causing changes in our microbiota. Apart from genetic makeup and exposure to environmental triggers, inappropriate increase in intestinal permeability (which may be influenced by the composition of the gut microbiota), a “hyper-belligerent” immune system responsible for the tolerance–immune response balance, and the composition of gut microbiome and its epigenetic influence on the host genomic expression have been identified as three additional elements in causing CIDs. During the past decade, a growing number of publications have focused on human genetics, the gut microbiome, and proteomics, suggesting that loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between gut microbiome and our immune system. This cross-talk is highly influential in shaping the host gut immune system function and ultimately shifting genetic predisposition to clinical outcome. This observation led to a re-visitation of the possible causes of CIDs epidemics, suggesting a key pathogenic role of gut permeability. Pre-clinical and clinical studies have shown that the zonulin family, a group of proteins modulating gut permeability, is implicated in a variety of CIDs, including autoimmune, infective, metabolic, and tumoral diseases. These data offer novel therapeutic targets for a variety of CIDs in which the zonulin pathway is implicated in their pathogenesis.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


Sign in / Sign up

Export Citation Format

Share Document