scholarly journals IoT high-frequency electronic transformer with dimmable output voltage using PWM signals

2021 ◽  
Vol 85 (2) ◽  
Author(s):  
Nelson Trillos-León ◽  
Jaime Barrero-Pérez ◽  
Julian Jaimes-Flórez ◽  
David Rojas

This work presents the design, simulation, and implementation of a low-power electronic transformer, which output effective voltage can be controlled wirelessly through WIFI, via a user interface on a mobile phone. The methodology used in this project consists of 4 stages, a rectifier, an inverter, the inverter’s control system, and a ferrite reducer. The inverter has a full-bridge design and was implemented using MOSFET. The control system can vary the frequency and duty cycle of the output signals, by phase shifting the control signals, thus achieving the functionality of reducing the effective output voltage. Circuit design simulations were performed using PsPice Orcad. The implementation and the mathematical model of the built electronic transformer are carried out. The designed transformer operates with a maximum input voltage of 120 Vrms at 60 Hz at frequencies between 20 kHz and 30 kHz, which are controlled through the user interface; can reduce a 120 Vrms 60 Hz input signal to an effective voltage between 10 Vrms and 20 Vrms at a maximum power of 50 W. This project presents the feasibility of developing electronic transformers with variable output voltage, remotely controlled using IoT technology.

2015 ◽  
Vol 781 ◽  
pp. 414-417
Author(s):  
Yutthana Kanthaphayao ◽  
Chalermpol Reaungepattanawiwat

This paper illustrates a fuzzy gain scheduling of PI plus derivative controller. The proposed control technique improves the transient response of a DC/DC converter. The proposed control system is easy to implement based on an STM32F4 microcontroller. The performance evaluation was done by an experiment through a boost DC/DC converter, with a 24W load, a 12V input voltage, and a 24V output voltage, respectively. The system operation achieves tight output voltage regulation, both for the steady-state and transient responses.


Author(s):  
Sesrima Badri ◽  
Krismadinata Krismadinata

This article discusses the design of a Boost type of DC-DC converter with a monitoring GUI. The increase in the output voltage of the converter is done by adjusting the pulse width (PWM). Change the size of the PWM is done by using a switching component in the form of MOSFETs, as well as the use of a gate drive that serves as a signal and security reinforcement between the control circuit and its main circuit. The input voltage of the converter is designed at 12VDC, with an output voltage of 12VDC-24VDC. In this study the GUI was successfully added to display several variables such as voltage (Volt), current (Ampere), as well as graphs of the input and output voltage of the boost converter. GUI monitoring of the converter can be viewed via a PC using Visual Studio 2012 software. Artikel ini membahas tentang perancangan sebuah rangkaian konverter DC-DC tipe Boost (penaik tegangan) dengan GUI monitoring. Kenaikan tegangan keluaran dari konverter dilakukan dengan mengatur lebar pulsa (PWM). Pengubahan besar kecilnya PWM dilakukan dengan meggunakan komponen switching berupa MOSFET, serta penggunaan gate drive yang berfungsi sebagai penguatan sinyal dan pengaman antara rangkaian kontrol dan rangkaian utamanya. Tegangan masukan dari konverter dirancang sebesar 12VDC, dengan tegangan keluaran 12VDC-24VDC. Dalam penelitian ini GUI berhasil ditambahkan untuk menampilkan beberapa variabel seperti tegangan (Volt), arus (Ampere), serta grafik tegangan masukan dan keluaran dari konverter boost. GUI monitoring dari konverter dapat dilihat melalui PC menggunakan software Visual Studio 2012.


2013 ◽  
Vol 4 (1) ◽  
pp. 26-31
Author(s):  
Andrii Chub ◽  
Oleksandr Husev ◽  
Dmitri Vinnikov

Abstract This paper is focused on the control issues of the quasi-Z-source derived push-pull converter with integrated magnetic elements. The proposed converter is intended for applications that require a high gain of the input voltage and galvanic isolation, i.e. power conditioning systems for renewable energy sources, such as variable speed wind turbines with direct driven permanent magnet synchronous generators. Magnitude and frequency of the output voltage of such turbines are variable due to intermittent nature of the wind power. Despite number of advantages converter has complicated dynamic behavior. Simulations showed change of stability margin depending on current operation point of the wind turbine and output load. Closed loop control system should provide fast response and stable operation in the wide range of wind speeds. Simulations showed that the conventional PI-controller with saturation cannot satisfy those requirements. Nonlinear PI-controller was derived by adding adjustment block to the conventional PI-controller. Adjustment block is drastically changing proportional and integral gains of the controller according to sign of the output voltage error. Proposed controller is compared with conventional one by means of simulation in PSIM. Simulation results prove that proposed nonlinear control system has improved regulator performance.


2019 ◽  
Vol 8 (3) ◽  
pp. 6213-6216 ◽  

This paper covenants owing to the working of PI Controller fed Boost converter. As PI controller removes the delay and offers quick control, it is preferred in this paper. Out of many controllers which provide effective output, PI is chosen which eliminates the necessity for constant operator attention and instinctive control to the system. In the PI Controller, the gains Kp and Ki are calculated by Ziegler and Nichols method. This PI Controller is used as the effective controller for the Boost Converter. In this converter the output voltage is stepped up (increased) for the given input voltage. The PWM Signal generator is used for commutation purpose in the proposed circuit. The Boost converter maintains a constant voltage at the output


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Mehran Pirooz ◽  
Seyed Hossein Mirmahdi ◽  
Ahmad Reza Khoogar

AbstractIn this paper, a new approach is proposed to control the dynamic response of a landing gear system subjected to runway force, both on heavy landing conditions and at the taxiing process. The mathematical model of the system is used in a way that covers nonlinear dynamics characteristics of landing gear and nonlinear/nonaffine property of the external actuator. The operation of the landing gear system and its components are described briefly. The desired control system includes two different interior loops for displacement and force control. The inner loop determines the actuator force and the outer loop performs the displacement control. A lumped uncertainty is considered in both displacement and force control loops that represent uncertainties including parametric errors, measurement noises, unmodeled dynamics, disturbance due to runway excitation, and other disturbances. The direct method of Lyapunov is utilized for asymptotic stability analysis of the robust nonlinear control system (RNCS). This system is simulated in MATLAB software and the performance of the proposed controller is analyzed exactly. Besides, the results are compared with a passive system and conventional PID control. The comparison indicates that RNCS works better and more precisely. This method can reduce vibrations at touchdown and taxiing and effectively overcome uncertainty and provide well aircraft handling by decreasing the changes in tire force.


Sign in / Sign up

Export Citation Format

Share Document