scholarly journals State-of-the-Art Development of Complex Systems and Their Simulation Methods

2021 ◽  
Vol 1 (4) ◽  
pp. 271-290
Author(s):  
Yiming Tang ◽  
Lin Li ◽  
Xiaoping Liu
Author(s):  
János Csaba Kun ◽  
Daniel Feszty

Recent trends in vehicle engineering require manufacturers to develop products with highly refined noise, vibration and harshness levels. The use of trim elements, which can be described as Poroelastic materials (PEM), are key to achieve quiet interiors. Finite Element Methods (FEM) provide established solutions to simple acoustic problems. However, the inclusion of poroelastic materials, especially at higher frequencies, proves to be a difficult issue to overcome. The goal of this paper was to summarize the state-of-the-art solutions to acoustic challenges involving FEM-PEM simulation methods. This involves investigation of measurement and simulation campaigns both on industrial and fundamental academic research levels.


2021 ◽  
Author(s):  
Stuart Fowler ◽  
Keith Joiner ◽  
Elena Sitnikova

<div>Cyber-worthiness as it is termed in Australian Defence, or cyber-maturity more broadly, is a necessary feature of modern complex systems which are required to operate in a hostile cyber environment. To evaluate the cyber-worthiness of complex systems, an assessment methodology is required to examine a complex system’s or system-of-system’s vulnerability to and risk of cyber-attacks that can compromise such systems. This assessment methodology should address the cyber-attack surface and threat kill chains, including supply chains and supporting infrastructure. A cyber-worthiness capability assessment methodology has been developed based on model-based systems engineering concepts to analyse the cyber-worthiness of complex systems and present a risk assessment of various cyber threats to the complex system. This methodology incorporates modelling and simulation methods that provide organisations greater visibility and consistency across diverse systems, especially to drive cybersecurity controls, investment and operational decisions involving aggregated systems. In this paper, the developed methodology will be presented in detail and hypothesised outcomes will be discussed.</div>


2020 ◽  
Vol 10 (3) ◽  
pp. 47
Author(s):  
Laura Calvet ◽  
Rocio de la Torre ◽  
Anita Goyal ◽  
Mage Marmol ◽  
Angel Juan

Managerial and Business Economics (ME/BE) aims at using quantitative and computational methods to make an efficient (ideally optimal) assignment of the scarce resources owned by firms and organizations. In the current global market, characterized by a fierce competition, an optimal use of the available resources is more important than ever for guaranteeing the economical sustainability of organizations and enterprises of any size. Heuristic optimization algorithms and simulation methods have been successfully employed to analyze and enhance complex systems and processes in a myriad of ME/BE-related fields. This paper reviews recent works on the use of these methodologies in competitive markets, as well as in imperfect markets considering externalities. The paper also discusses open challenges and how state-of-the art methods combining optimization, simulation, and machine learning can contribute to properly address them.


2021 ◽  
Vol 47 (4) ◽  
pp. 298-326
Author(s):  
V. A. Frolov ◽  
A. G. Voloboy ◽  
S. V. Ershov ◽  
V. A. Galaktionov

1986 ◽  
Vol 73 ◽  
Author(s):  
Larry W. Burggraf ◽  
Larry P. Davis

ABSTRACTWe have applied state-of-the-art semi-empirical molecular orbital methods to a study of the anionic polymerization of silanols to form silica. In particular, we have considered nucleophilic attack on silanols and subsequent reactions of the products. Hydroxide addition proceeds without activation to form five-coordinate silicate anions. Five-coordinate structures can also be formed by oligomerization following the attack of hydroxide on neutral silanols to abstract a proton. These five-coordinate structures are predicted to play a key role as intermediates in the polymerization process. Water can be eliminated from these anions, but with a substantial activation barrier. The activation barrier appears to be lower for the larger, more complex systems. These predictions are consistent with a rapid pre-equilibrium to form dimer anions followed by the slower reaction to form higher oligomers.


2005 ◽  
Vol 896 ◽  
Author(s):  
Betsy Mavity Rice ◽  
Edward F. C. Byrd

AbstractOur research is focused on developing computational capabilities for the prediction of properties of energetic materials associated with performance and sensitivity. Additionally, we want to identify and characterize the dynamic processes that influence conversion of an energetic material to products upon initiation. We are attempting to achieve these goals through the use of standard atomistic simulation methods. In this paper various theoretical chemistry methods and applications to energetic materials will be described. Current capabilities in predicting structures, thermodynamic properties, and dynamic behavior of these materials will be demonstrated. These are presented to exemplify how information generated from atomistic simulations can be used in the design, development, and testing of new energetic materials. In addition to illustrating current capabilities, we will discuss limitations of the methodologies and needs for advancing the state of the art in this area.


Author(s):  
Dmitri V. Alexandrov ◽  
Andrey Yu. Zubarev

This theme issue, in two parts, continues research studies of transport phenomena in complex media published in the first part (Alexandrov & Zubarev 2021 Phil. Trans. R. Soc. A 379 , 20200301. ( doi:10.1098/rsta.2020.0301 )). The issue is concerned with theoretical, numerical and experimental investigations of nonlinear transport phenomena in heterogeneous and metastable materials of different nature, including biological systems. The papers are devoted to the new effects arising in such systems (e.g. pattern and microstructure formation in materials, impacts of external processes on their properties and evolution and so on). State-of-the-art methods of numerical simulations, stochastic analysis, nonlinear physics and experimental studies are presented in the collection of issue papers. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


Author(s):  
Simon M Dittami ◽  
Enrique Arboleda ◽  
Jean-Christophe Auguet ◽  
Arite Bigalke ◽  
Enora Briand ◽  
...  

Host-microbe interactions play crucial roles in marine ecosystems, but we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help describe and understand these complex systems. It posits that a host and its associated microbiota, living together in a long-lasting relationship, form the holobiont, and have to be studied together, as a coherent biological and functional unit, in order to understand the biology, ecology and evolution of the organisms. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences with comparisons to terrestrial science whenever appropriate. A deeper understanding of such complex systems, however, will require further technological and conceptual advances. The most significant challenge will be to bridge functional research on simple and tractable model systems and global approaches. This will require scientists to work together as an (inter)active community in order to address, for instance, ecological and evolutionary questions and the roles of holobionts in biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document