Design of Transformer with Impedance Matching Circuit for High Power Transmitter of Active Sonar

Author(s):  
Seung-Min Song ◽  
In-Dong Kim ◽  
Byung-Hwa Lee ◽  
Jeong-Min Lee
2012 ◽  
Vol 472-475 ◽  
pp. 1488-1491
Author(s):  
Zhen Jiang Tan ◽  
Ming Zhou

In order to acquire enough energy, high power pulse must be used to drive a piezoelectric transducer. At the same time, it is a key technology to design an impedance matching circuit between a signal generator and a piezoelectric transducer so that signal source can transmit energy to the piezoelectric transducer effectively. In the paper, the impedance matching theory is analyzed. And, a method of using an oscilloscope to measure resonance frequency of the piezoelectric transducer is tested, through which, a perfect matching circuit is designed.


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Tao Li ◽  
Pooi Lee

A piezoelectric energy harvester was developed in this paper. It is actuated by the vibration leakage from the nodal position of a high-power ultrasonic cutting transducer. The harvester was excited at a low displacement amplitude (0.73 µmpp). However, its operation frequency is quite high and reaches the ultrasonic range (24.4 kHz). Compared with another low frequency harvester (66 Hz), both theoretical and experimental results proved that the advantages of this high frequency harvester include (i) high current generation capability (up to 20 mApp compared to 1.3 mApp of the 66 Hz transducer) and (ii) low impedance matching resistance (500 Ω in contrast to 50 kΩ of the 66 Hz transducer). This energy harvester can be applied either in sensing, or vibration controlling, or simply energy harvesting in a high-power ultrasonic system.


2019 ◽  
Vol 11 (7) ◽  
pp. 658-665
Author(s):  
Daniel Kienemund ◽  
Nicole Bohn ◽  
Thomas Fink ◽  
Mike Abrecht ◽  
Walter Bigler ◽  
...  

AbstractLow loss, ferroelectric, fully-printed varactors for high-power matching applications are presented. Piezoelectric-induced acoustic resonances reduce the power handling capabilities of these varactors by lowering the Q-factor at the operational frequency of 13.56 MHz. Here, a quality factor of maximum 142 is achieved with an interference-based acoustic suppression approach utilizing double metal–insulator–metal structures. The varactors show a tunability of maximum 34% at 300 W of input power. At a power level of 1 kW, the acoustic suppression technique greatly reduces the dissipated power by 62% from 37 W of a previous design to 14.2 W. At this power level, the varactors remain tunable with maximum 18.2% and 200 V of biasing voltage.


2018 ◽  
Vol 10 (3) ◽  
pp. 308-312
Author(s):  
Kaijun Song ◽  
Te Kong ◽  
Yu Zhu ◽  
Hongxing Xu ◽  
Lifei Jiang ◽  
...  

AbstractA novel Gysel power divider with high power-handling capability based on half-mode substrate integrated waveguide (HMSIW) has been presented in this paper. A HMSIW ring is used and good input/output impedance matching is achieved based on HMSIW-microstrip taper transition. Two microstrip stubs are introduced in HMSIW ring to assemble two isolation resistors to improve the isolation between the output ports. The even- and odd-mode analysis method is used for the presented circuit. A prototype of the presented power divider is designed, fabricated, and measured. The measured results show a reasonable agreement with the simulated ones.


2019 ◽  
Vol 68 (11) ◽  
pp. 1321-1329
Author(s):  
Seung-Min Song ◽  
In-Dong Kim ◽  
Byung-Hwa Lee ◽  
Jeong-Min Lee

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6882
Author(s):  
Eunjung Kang ◽  
Tae Heung Lim ◽  
Seulgi Park ◽  
Hosung Choo

This paper proposes a novel wideband leaf-shaped printed dipole antenna sensor that uses a parasitic element to improve the impedance matching bandwidth characteristics for high-power jamming applications. The proposed antenna sensor consists of leaf-shaped dipole radiators, matching posts, rectangular slots, and a parasitic loop element. The leaf-shaped dipole radiators are designed with exponential curves to obtain a high directive pattern and are printed on a TLY-5 substrate for high-power durability. The matching posts, rectangular slots, and a parasitic loop element are used to enhance the impedance matching characteristics. The proposed antenna sensor has a measured fractional bandwidth of 66.7% at a center frequency of 4.5 GHz. To confirm the array antenna sensor characteristics, such as its active reflection coefficients (ARCs) and beam steering gains, the proposed single antenna sensor is extended to an 11 × 1 uniform linear array. The average values of the simulated and measured ARCs from 4.5 to 6 GHz are −13.4 dB and −14.7 dB. In addition, the measured bore-sight array gains of the co-polarization are 13.4 dBi and 13.7 dBi at 4 GHz and 5 GHz, while those of the cross-polarizations are −4.9 dBi and −3.4 dBi, respectively. When the beam is steered at a steering angle, θ0, of 15°, the maximum measured array gains of the co-polarization are 12.2 dBi and 10.3 dBi at 4 GHz and 5 GHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document