Radiation Pattern Antenna System Measurement

Author(s):  
Michal Dzuris ◽  
Norbert Grilli ◽  
Imrich Szolik ◽  
Jozef Hallon
Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2456
Author(s):  
Kok Jiunn Ng ◽  
Mohammad Tariqul Islam ◽  
Adam M. Alevy ◽  
Mohd. Fais Mansor

This paper presents an ultralow profile, low passive intermodulation (PIM), and super-wideband in-building ceiling mount antenna that covers both the cellular and public safety ultra high frequency (UHF) band for distributed antenna system (DAS) applications. The proposed antenna design utilizes a modified 2-D planar discone design concept that is miniaturized to fit into a small disc-shaped radome. The 2-D planar discone has an elliptical-shaped disc monopole and a bell-shaped ground plane, a stub at the shorting path, with asymmetrical structure and an additional proximity coupling patch to maximize the available electrical path to support the 350 MHz band range. The proposed design maximizes the radome area with a reduction of about 62% compared to similar concept type antennas. Besides, the proposed design exhibits an improved radiation pattern with null reduction compared to a typical dipole/monopole when lies at the horizontal plane. A prototype was manufactured to demonstrate the antenna performance. The VSWR and radiation pattern results agreed with the simulated results. The proposed antenna achieves a band ratio of 28.57:1 while covering a frequency range of 350–10000 MHz. The measured passive intermodulation levels are better than −150 dBc (2 × 20 Watts) for 350, 700 and 1920 MHz bands.


2019 ◽  
Vol 30 ◽  
pp. 05021
Author(s):  
Alexander Zhuravlev ◽  
Alexander Golovkov ◽  
Polina Terenteva ◽  
Victor Malyshev ◽  
Michail Shmyrin ◽  
...  

Ommidirectional in azimuth plane antennas with horizontal polarization are used in communication systems of McWILL standard, digital television systems of DVB-T2 standard, radio monitoring systems, semi-active ranging using the target illumination with the television broadcast signal, and many other cases. In many cases, radar and radio monitoring systems use phase methods to determine the azimuth and elevation angle of the target. To view all azimuthal angles, ring arrays consisting of omnidirectional emitters, usually also represented by ring arrays, are used. This paper studies the characteristics of an omnidirectional radiating element of electrically small horizontal dipole elements. An expression is derived that relates the radius of the dipole ring array to the number of dipoles and the variation of the resulting radiation pattern. The results are confirmed by experimental studies.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1372
Author(s):  
Muhammad Kamran Shereen ◽  
Muhammad Irfan Khattak ◽  
Mu’ath Al-Hasan

This paper presents a novel combo-reconfigurable architecture for the frequency and radiation patterning of a novel antenna system for future fifth-generation (5G) millimeter-wave mobile communication. The tuning system independently controls the frequency and radiation pattern shifts, without letting them affect each other. The proposed antenna consists of two patches, radiating at 28 GHz and 38 GHz. A negative-channel metal–oxide–semiconductor (NMOS) transistor was used as a switch for ON/OFF states. Frequency reconfiguration was controlled by switches SD1 and SD2, while pattern reconfigurability was achieved by SD3–SD18. The desired resonant frequencies of 28 GHz and 38 GHz were achieved by varying patch dimensions through the ON and OFF states of the SD1 and SD2 switches. Similarly, parasitic stubs on the ground are used to control surface currents, which results in pattern reconfiguration. The results were analyzed for 18 different combinations of the switch states. Adding/removing parasitic stubs and switches changed the beam steering angle (by 45° shift) from 0° to 180°, which modified the stub dimensions and changed the beam-width of the main lobe.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Haitham Alsaif ◽  
Mohamed A. H. Eleiwa

A novel compact planar 2 × 2 antenna system with super-wide bandwidth is presented in this paper. The MIMO antenna has four square-shaped patches with two slots in each that are interconnected with each other using four strip lines printed on a substrate of Rogers Duroid RT 5880 with relative permittivity of εr = 2.2 and tangent loss of δ = 0.0009. The proposed antenna system has a partial ground plane with two enhancement fractured slots. The design is characterized by a super-wide impedance starting from 15.2 to 62 GHz (a bandwidth of 46.8 GHz) and compact total system size of 11.2 × 15.25 mm2 with a thickness of 0.12 mm. The proposed MIMO design has omnidirectional radiation pattern for far field and the achieved peak gain reaches 13.5 dBi. The presented planar antenna which relies on computer aided design, has been designed and simulated using an industrial standard simulation code. Its performance results showed that the MIMO design is characterized by super wide bandwidth, omnidirectional radiation pattern, and high-power gain with miniaturized physical size; thus, it is suitable for radio-frequency identification (RFID) systems, fifth-generation applications, ultra-wideband systems, and others.


2021 ◽  
Vol 23 (4) ◽  
pp. 68-73
Author(s):  
Andrey V. Lazarev ◽  
Andrey Yu. Kiselev ◽  
Anatoly M. Bobreshov ◽  
Grigory K. Uskov

Annotation In modern systems of radiolocation, navigation and communication, the requirements for antennas are becoming higher requirements every year, namely: operation in a wide frequency range, the ability to change of direction of the main lobe of the radiation pattern. Antenna systems with similar characteristics can be built using dielectric antenna beamforming structures. One of these structures is the Luneberg lens, the peculiarity of which is its spherical symmetry. However, the curved surface of this lens significantly complicates the placement of transmitting and receiving elements along it, which increases the complexity of constructing the entire antenna system. This paper proposes an algorithm for constructing a Luneberg lens with a flat surface. The lens was synthesized using the method of quasi-conformal optical transformations, the mathematical algorithm of which is also described in this work. The paper also presents the results of mathematical modeling of the antenna system using a Luneberg lens with a flat surface at different positions of the emitter relative to the center of the lens, as well as different cut angles. The simulation results show that the synthesized lens can be used to construct a multi-beam antenna system that allows the direction of the main lobe of the antenna radiation pattern to be rearranged over a wide range of angles. However, the scanning angles of this system are limited by the lens geometry, the larger the maximum scanning angle we choose, the more significant the influence of the side lobes on the radiation pattern becomes.


Author(s):  
I. N. Rostokin ◽  
E. V. Fedoseeva ◽  
E. A. Rostokina

The article deals with constructing an antenna system for a passive multi-frequency radiometry system featuring compensation for radiation pattern side lobes. We supply results of experimentally investigating directional properties of a dual-mode multi-frequency feed horn. We also provide results of electromagnetic modelling of signal transmission characteristics in the multi-frequency feed horn that we present


Doklady BGUIR ◽  
2019 ◽  
pp. 22-29
Author(s):  
A. A. Dyatko ◽  
S. M. Kostromitski ◽  
P. N. Shumski ◽  
I. N. Davydenkо

The purpose of the work, the results of which are presented within the framework of the article, was to analyze the operation of the radar goniometer system under the conditions of a signal generated by coherent radiation sources from two points in space (cross-eye interference). To achieve the goal in the present work, a study was made of the dependence of the settings of the goniometric system on the ratio of the parameters of the cross-eye jammer and the angular coordinate meter itself. As a goniometric system, an angular coordinate meter was used, operating by the method of amplitude instantaneous signal comparison. The studies were carried out by the method of theoretical analysis of the influence of the radiation pattern parameters of the antenna system of the meter on the result of measuring the angular position of a virtual radiation source. As a result, an equation is obtained that relates the angular position of the virtual radiation source with the radiation pattern parameters of the antenna system of the meter, the shape of which was approximated by a gaussian curve. To illustrate the functioning of the goniometric system at specific values of the parameters supplied to its input signals, the method of mathematical modeling was used. Modeling was performed for the given parameters, which determine both the position of the radiation sources in space and the algorithm of operation of the angular coordinate meter. Based on the results obtained, it is shown that the angular coordinate meter has three stationary states corresponding to the position of the virtual radiation source in space. It is shown that only two of these states are stable. The latter means that, depending on the initial conditions, the angular coordinate meter can fix one of the two possible positions of the virtual radiation source in space. The scientific novelty of this work is to establish a relationship between the position of the virtual radiation source in space and the parameters of the angular coordinate meter.


Sign in / Sign up

Export Citation Format

Share Document