Polarization Vision

Author(s):  
Thomas W. Cronin ◽  
Sönke Johnsen ◽  
N. Justin Marshall ◽  
Eric J. Warrant

This chapter explores how polarization sensitivity is achieved in animals and how it is used in natural behavior. Arthropods are famous for their polarization sensitivity, but other animals, including vertebrates are also capable of this. A remarkable feature of some insect systems is that the sky pattern is genetically imprinted into the neural arrangements, all the way through to the central nervous system. However, celestial navigation is not the only use to which animals can put polarization vision. Other functions may include communication, contrast enhancement, and camouflage breaking. Polarized light stimuli are abundant in nature. Although no important source of light is polarized, light may become polarized when it is scattered or reflected. These two fundamental principles produce abundant polarized light in natural scenes, which explains why polarization vision is so common.

2000 ◽  
Vol 355 (1401) ◽  
pp. 1187-1190 ◽  
Author(s):  
Craig W. Hawryshyn

Polarization vision in vertebrates has been marked with significant controversy over recent decades. In the last decade, however, models from two laboratories have indicated that the spatial arrangement of photoreceptors provides the basis for polarization sensitivity.Work in my laboratory, in collaboration with I. Novales Flamarique and F. I. Harosi, has shown that polarization sensitivity depends on a well–defined square cone mosaic pattern and that the biophysical properties of the square cone mosaic probably account for polarization vision in the ultraviolet spectrum. The biophysical mechanism appears to be based on the selective reflection of axial–polarized light by the partitioning membrane, formed along the contact zone between the members of the double cones, onto neighbouring ultraviolet–sensitive cones. In this short review, I discuss the historical development of this research problem.


1996 ◽  
Vol 199 (9) ◽  
pp. 2077-2084
Author(s):  
N Shashar ◽  
P Rutledge ◽  
T Cronin

Polarization sensitivity is well documented in marine animals, but its function is not yet well understood. Of the cephalopods, squid and octopus are known to be sensitive to the orientation of polarization of incoming light. This sensitivity arises from the orthogonal orientation of neighboring photoreceptors. Electron microscopical examination of the retina of the cuttlefish Sepia officinalis L. revealed the same orthogonal structure, suggesting that cuttlefish are also sensitive to linearly polarized light. Viewing cuttlefish through an imaging polarized light analyzer revealed a prominent polarization pattern on the arms, around the eyes and on the forehead of the animals. The polarization pattern disappeared when individuals lay camouflaged on the bottom and also during extreme aggression display, attacks on prey, copulation and egg-laying behavior in females. In behavioral experiments, the responses of cuttlefish to their images reflected from a mirror changed when the polarization patterns of the reflected images were distorted. These results suggest that cuttlefish use polarization vision and display for intraspecific recognition and communication.


2021 ◽  
Vol 17 (2) ◽  
Author(s):  
Mizuki Uemura ◽  
Andrej Meglič ◽  
Myron P. Zalucki ◽  
Andrea Battisti ◽  
Gregor Belušič

Processionary caterpillars of Thaumetopoea pityocampa (in Europe) and Ochrogaster lunifer (in Australia) (Lepidoptera: Notodontidae) form single files of larvae crawling head-to-tail when moving to feeding and pupation sites. We investigated if the processions are guided by polarization vision. The heading orientation of processions could be manipulated with linear polarizing filters held above the leading caterpillar. Exposure to changes in the angle of polarization around the caterpillars resulted in corresponding changes in heading angles. Anatomical analysis indicated specializations for polarization vision of stemma I in both species. Stemma I has a rhabdom with orthogonal and aligned microvilli, and an opaque and rugged surface, which are optimizations for skylight polarization vision, similar to the dorsal rim of adult insects. Stemmata II-VI have a smooth and shiny surface and lobed rhabdoms with non-orthogonal and non-aligned microvilli; they are thus optimized for general vision with minimal polarization sensitivity. Behavioural and anatomical evidence reveal that polarized light cues are important for larval orientation and can be robustly detected with a simple visual system.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2016 ◽  
Vol 1 (15) ◽  
pp. 79-83
Author(s):  
Ed Bice ◽  
Kristine E. Galek

Dysphagia is common in patients with dementia. Dysphagia occurs as a result of changes in the sensory and motor function of the swallow (Easterling, 2007). It is known that the central nervous system can undergo experience-dependent plasticity, even in those individuals with dementia (Park & Bischof, 2013). The purpose of this study was to explore whether or not the use of neuroplastic principles would improve the swallow motor plan and produce positive outcomes of a patient in severe cognitive decline. The disordered swallow motor plan was manipulated by focusing on a neuroplastic principles of frequency (repetition), velocity of movement (speed of presentation), reversibility (Use it or Lose it), specificity and adaptation, intensity (bolus size), and salience (Crary & Carnaby-Mann, 2008). After five therapeutic sessions, the patient progressed from holding solids in her mouth with decreased swallow initiation to independently consuming a regular diet with full range of liquids with no oral retention and no verbal cues.


Sign in / Sign up

Export Citation Format

Share Document