Introduction

Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This introductory chapter provides an overview of the Earth's climate system—its composition, structure, and circulation—and some of the ways in which these vary naturally with time. It examines the key features of the structure of the Sun, its magnetic field, atmosphere, and its emission of radiation and particles. A comprehension of how the sun affects the Earth is a fundamental requirement for understanding how climate has varied in the past and how it might change in the future. This is particularly important in the context of determining the cause(s) of climate change and understanding natural factors in order to be able to attribute to human activity any past or potential future influence on a range of timescales.

Author(s):  
Mike Lockwood ◽  
Claus Fröhlich

Abstract There is considerable evidence for solar influence on the Earth's pre-industrial climate and the Sun may well have been a factor in post-industrial climate change in the first half of the last century. Here we show that over the past 20 years, all the trends in the Sun that could have had an influence on the Earth's climate have been in the opposite direction to that required to explain the observed rise in global mean temperatures.


2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


2020 ◽  
Vol 46 (10) ◽  
pp. 1167-1181 ◽  
Author(s):  
Maeve Cooke

The most fundamental challenge facing humans today is the imminent destruction of the life-generating and life-sustaining ecosystems that constitute the planet Earth. There is considerable evidence that the strongest contemporary ecological threat is anthropogenic climate change resulting from the increasing warming of the atmosphere, caused by cumulative CO2 and other emissions as a result of collective human activity over the past few 100 years. This process of climate change is reinforced by further ecological problems such as pollution of land, air and sea, depletion of resources, land degradation and the loss of biodiversity. The name gaining currency for this emerging epoch of instability in the Earth’s eco-systems is the Anthropocene. Anthropogenic climate change calls for a categorical shift in thinking about the place of humanity in these systems and requires fundamental rethinking of ethics and politics. What would an appropriate ethical frame for politics in the Anthropocene look like? In response to this question, I sketch a proposal for an ethically non-anthropocentric ethics. I draw on early Frankfurt School Critical Theorists, and on Habermas, but move beyond these theorists in key respects.


2018 ◽  
Vol 8 (3) ◽  
pp. 74
Author(s):  
Geng-Jian Zhou ◽  
Qiao-Xu Qin ◽  
Wei-Zhou Lin ◽  
Yuan-Biao Zhang

Over the past few decades, the Earth’s climate has undergone conspicuous changes, some of which have a profound impact on social and governmental systems. The purpose of this paper is to establish a model for measuring national fragile and the impact of climate change on a country. For this purpose, we first define the Fragile States Index (FSI) to measure the fragility of a country based on population, crime rate and education, which are the three aspects that most countries or regions will focus on. Second, we use the FSI to illustrate how climate change affects the Democratic Republic of the Congo. Third, we analyze the definitive indicators of Indonesia and predict the changes of FSI. Finally, the effects of each intervention policy were obtained by analyzing Indonesia’s intervention policy on environmental change. To provide ideas for intervention on climate change.


2018 ◽  
Vol 10 (1) ◽  
pp. 23-27
Author(s):  
Mohamed Mousa

Abstract Climate change has become one of the main challenges facing humanity. Over the past decade, this phenomenon, which may have been caused by natural variability and/or human activity, has attracted many scholars from different scientific disciplines to warn of its potential consequences. The author of this paper has decided to address the existence of this important phenomenon in organizational literature. However, upon exploring different academic databases, the rarity of research focusing on climate change and its relationship and/or effect on HR or organizational aspects became obvious. Accordingly, the author recommends other HR and organizational scholars devote considerable space to this phenomenon in their field.


2017 ◽  
Vol 24 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Xumao Zhao ◽  
Baoping Ren ◽  
Paul A. Garber ◽  
Xinhai Li ◽  
Ming Li

2020 ◽  
Author(s):  
Sarah S. Eggleston ◽  
Oliver Bothe ◽  
Nerilie Abram ◽  
Bronwen Konecky ◽  
Hans Linderholm ◽  
...  

<p>The past two thousand years is a key interval for climate science because this period encompasses both the era of human-induced global warming and a much longer interval when changes in Earth's climate were governed principally by natural drivers. This earlier 'pre-industrial' period is particularly important for two reasons. Firstly, we now have a growing number of well-dated, climate sensitive proxy data with high temporal resolution that spans the full period. Secondly, the pre-industrial climate provides context for present-day climate change, sets real-world targets against which to evaluate the performance of climate models, and allows us to address other questions of Earth sciences that cannot be answered using only a century and a half of observational data. </p><p>Here, we first provide several perspectives on the concept of a 'pre-industrial climate'. Then, we highlight the activities of the PAGES 2k Network, an international collaborative effort focused on global climate change during the past two thousand years. We highlight those aspects of pre-industrial conditions (including both past climate changes and past climate drivers) that are not yet well constrained, and suggest potential areas for research during this period that would be relevant to the evolution of Earth's future climate.</p>


Sign in / Sign up

Export Citation Format

Share Document