scholarly journals Impact of climate change and human activity on the runoff in the upper reaches of the Shiyang River, Northwest China

Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.

2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3418
Author(s):  
Dan Yan ◽  
Zhizhu Lai ◽  
Guangxing Ji

Assessing the contribution rates of climate change and human activities to the runoff change in the source area of the Yellow River can provide support for water management in the Yellow River Basin. This paper firstly uses a multiple linear regression method to evaluate the contribution rates of climate change and human activities to the vegetation change in the source area of the Yellow River. Next, the paper uses the Budyko hypothesis method to calculate the contribution rates of climatic factors (including precipitation, potential evaporation, and subsequent vegetation changes) and vegetation changes caused by human activities to the runoff change of the Tangnaihai Hydrometric Station. The results showed that: (1) the annual runoff and precipitation in the source area of the Yellow River have a downward trend, while the annual potential evaporation and NDVI (Normalized Difference Vegetation Index) show an increasing trend; (2) The contribution rates of climate change and human activities to the vegetation change in the source area of the Yellow River is 62.79% and 37.21%, respectively; (3) The runoff change became more and more sensitive to changes in climate and underlying surface characteristic parameters; (4) The contribution rates of climatic factors (including precipitation, potential evaporation, and subsequent vegetation changes) and vegetation changes caused by human activities to the runoff change at Tangnaihai Hydrological Station are 75.33% and 24.67%, respectively; (5) The impact of precipitation on runoff reduction is more substantial than that of potential evaporation.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 612
Author(s):  
Guangxing Ji ◽  
Huiyun Song ◽  
Hejie Wei ◽  
Leying Wu

Analyzing the temporal variation of runoff and vegetation and quantifying the impact of anthropic factors and climate change on vegetation and runoff variation in the source area of the Yangtze River (SAYR), is of great significance for the scientific response to the ecological protection of the region. Therefore, the Budyko hypothesis method and multiple linear regression method were used to quantitatively calculate the contribution rates of climate change and anthropic factors to runoff and vegetation change in the SAYR. It was found that: (1) The runoff, NDVI, precipitation, and potential evaporation in the SAYR from 1982 to 2016 all showed an increasing trend. (2) The mutation year of runoff data from 1982 to 2016 in the SAYR is 2004, and the mutation year of NDVI data from 1982 to 2016 in the SAYR is 1998. (3) The contribution rates of precipitation, potential evaporation and anthropic factors to runoff change of the SAYR are 75.98%, −9.35%, and 33.37%, respectively. (4) The contribution rates of climatic factors and anthropic factors to vegetation change of the SAYR are 38.56% and 61.44%, respectively.


Author(s):  
Liu Liu ◽  
Zezhong Guo ◽  
Guanhua Huang

Abstract. The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m−3. Compared with that of the period from 2012 to 2015, the water productivity during 2018–2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


2019 ◽  
Vol 516 ◽  
pp. 166-178 ◽  
Author(s):  
Pavel E. Tarasov ◽  
Dieter Demske ◽  
Christian Leipe ◽  
Tengwen Long ◽  
Stefanie Müller ◽  
...  

Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This introductory chapter provides an overview of the Earth's climate system—its composition, structure, and circulation—and some of the ways in which these vary naturally with time. It examines the key features of the structure of the Sun, its magnetic field, atmosphere, and its emission of radiation and particles. A comprehension of how the sun affects the Earth is a fundamental requirement for understanding how climate has varied in the past and how it might change in the future. This is particularly important in the context of determining the cause(s) of climate change and understanding natural factors in order to be able to attribute to human activity any past or potential future influence on a range of timescales.


Author(s):  
Peter Barry ◽  
William Welstead

This chapter maps out the richness of ecocriticism as it has extended its boundaries during the past decade from environmental literary texts to the wider environmental humanities. The still growing sense of environmental crisis and climate change is significantly influencing both creative methodologies and outputs, and critical responses, in the humanities and beyond. In particular, there is an increasing trend towards collaboration between the creative arts and the sciences, and between writers and artists in different media. At the same time, disciplines from social science and heritage interpretation are finding common cause with the creative arts. These themes are further explored in the introduction to subsequent chapters.


2020 ◽  
Vol 46 (10) ◽  
pp. 1167-1181 ◽  
Author(s):  
Maeve Cooke

The most fundamental challenge facing humans today is the imminent destruction of the life-generating and life-sustaining ecosystems that constitute the planet Earth. There is considerable evidence that the strongest contemporary ecological threat is anthropogenic climate change resulting from the increasing warming of the atmosphere, caused by cumulative CO2 and other emissions as a result of collective human activity over the past few 100 years. This process of climate change is reinforced by further ecological problems such as pollution of land, air and sea, depletion of resources, land degradation and the loss of biodiversity. The name gaining currency for this emerging epoch of instability in the Earth’s eco-systems is the Anthropocene. Anthropogenic climate change calls for a categorical shift in thinking about the place of humanity in these systems and requires fundamental rethinking of ethics and politics. What would an appropriate ethical frame for politics in the Anthropocene look like? In response to this question, I sketch a proposal for an ethically non-anthropocentric ethics. I draw on early Frankfurt School Critical Theorists, and on Habermas, but move beyond these theorists in key respects.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 571 ◽  
Author(s):  
Yuliang Zhou ◽  
Chengguang Lai ◽  
Zhaoli Wang ◽  
Xiaohong Chen ◽  
Zhaoyang Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document