The Making of the Moon

Author(s):  
John Chambers ◽  
Jacqueline Mitton

This chapter considers how the very existence of the Moon, the only large satellite in the inner solar system, is a puzzle. The Moon is sufficiently large that one would think of it as a planet if it traveled around the Sun rather than Earth. Much of what the public now knows about the Moon comes from space missions, beginning in the 1960s and early 1970s. Six American Apollo missions each landed two astronauts on the surface. Three of the Soviet Union's unmanned Luna spacecraft touched down on the surface and then returned to Earth. After a long gap, lunar exploration resumed in the 1990s, when NASA's Clementine and Lunar Prospector spacecraft went into orbit. Recently, the pace of exploration has increased again, with the European Space Agency, Japan, China, and India, as well as NASA, all sending missions to the Moon.

Author(s):  
J. A. Moore ◽  
B. Gendre ◽  
D. M. Coward ◽  
H. Crisp ◽  
A. Klotz

The 1.0 metre f/4 fast-slew Zadko Telescope was installed in June 2008 approximately seventy kilometres north of Perth at Yeal, in the Shire of Gingin, Western Australia. Since the Zadko Telescope has been in operation it has proven its worth by detecting numerous Gamma Ray Burst afterglows, two of these being the most distant 'optical transients' imaged by an Australian telescope. Other projects include a contract with the European Space Agency (ESA) to image potentially hazardous near Earth asteroids (2019), monitoring space weather on nearby stars (2019), and photometry of a transit of Saturn's moon Titan (2018). Another active Zadko Telescope project is tracking Geostationary satellites and attempting to use photometry to classify various space debris (defunct satellites). The Zadko Telescope's importance as a potential tool for education, training, and public outreach cannot be underestimated, as the global awareness of the importance of astronomy (and space science) as a context for teaching science continues to increase. An example of this was the national media coverage of its contribution to the discovery of colliding neutron stars in 2017, capturing the imagination of the public. In this proceeding, I will focus on the practical aspects of managing a robotic Observatory, focusing on the sustainability of the Observatory and the technical management involved in hosting different commercial projects. I will review the evolution of the Observatory, from its early, single instrument, state to its current multi-telescope and multi-instrument capabilities. I will finish by outlining the future of the Observatory and the site.


2011 ◽  
Vol 41 (2) ◽  
pp. 123-178 ◽  
Author(s):  
Arturo Russo

Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-1990s as an exemplar of a “flexible mission” that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.


2021 ◽  
Author(s):  
Mikael Granvik ◽  
Tuomas Lehtinen ◽  
Andrea Bellome ◽  
Joan-Pau Sánchez

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost space mission can do. The proposed space segment will include a single spacecraft capable of surviving and operating in the harsh environment near the Sun. The spacecraft design relies on the heritage of missions such as Rosetta, MESSENGER, Parker Solar Probe, BepiColombo, and Solar Orbiter. The spacecraft will rendezvous with an asteroid during its perihelion passage and records the changes taking place on the asteroid’s surface. The primary scientific payload has to be capable of imaging the asteroid’s surface in high resolution using visual and near-infrared channels as well as collecting and analyzing particles that are ejected from the asteroid. The payload bay also allows for additional payloads relating to, for example, solar research. The Icarus spacecraft and the planned payloads have high technology readiness levels and the mission is aimed to fit the programmatic and cost constraints of the F1 mission (Comet Interceptor) by the European Space Agency. Considering the challenging nature of the Icarus trajectory and the fact that the next F-class mission opportunity (F2) is yet to be announced, we conclude that Icarus is feasible as an F-class mission when certain constraints such as a suitable launch configuration are met (e.g., if EnVision is selected as M5). A larger mission class, such as the M class by the European Space Agency, would be feasible in all circumstances.</p> </div> </div> </div>


2020 ◽  
Author(s):  
Michaela Musilova ◽  
Bernard Foing ◽  
Anouk Beniest ◽  
Henk Rogers

<p>As of 2018, the International MoonBase Alliance (IMA), has been organizing regular simulated missions to the Moon and Mars at the Hawaii Space Exploration Analog and Simulation (HI-SEAS) habitat. HI-SEAS is a lunar and Martian analog research station located on the active volcano Mauna Loa in Hawaii. The missions that take place at HI-SEAS can be of varied duration, from several days to several months, depending on the needs of the researchers. They are open to space agencies, organizations and companies worldwide to take part in, provided their research and technology testing will help contribute to the exploration of the Moon and Mars. The crews are supported by a Mission Control Center based on the Big Island of Hawaii as well. A series of EuroMoonMars IMA HI-SEAS (EMMIHS) missions have been taking place at HI-SEAS since 2019. These missions bring together researchers from the European Space Agency (ESA), IMA, the International Lunar Exploration Working Group (ILEWG), European Space Research and Technology Centre (ESTEC), VU Amsterdam and many other international organizations. Crews on these missions perform geological, astrobiological and architectural research; technological tests using drones, 3Dprinters and rovers; as well as performing outreach and educational projects. The EMMIHS missions typically last for two weeks each. During this time, the crew is isolated within the HI-SEAS habitat, which they cannot leave without performing EVAs (Extra-Vehicular Activities) in analog space-suits and with the permission of Mission Control. The EMMIHS campaigns aim to increase the awareness about the research and technology testing that can be performed in analogue environments, in order to help humans become multiplanetary species. Furthermore, the research and technological experiments conducted at HI-SEAS are going to be used to help build a Moon base in Hawaii, and ultimately to create an actual Moon base on the Moon, as part of IMA’s major goals. Future missions at HI-SEAS include more EMMIHS campaigns, collaborative missions with ESA, NASA, University of Hawaii, University of South Florida and with companies, such as SIFT and Ketone Technologies.</p>


2014 ◽  
Vol 10 (S305) ◽  
pp. 108-113 ◽  
Author(s):  
Sami K. Solanki ◽  
Jose Carlos del Toro Iniesta ◽  
Joachim Woch ◽  
Achim Gandorfer ◽  
Johann Hirzberger ◽  
...  

AbstractThe Solar Orbiter is the next solar physics mission of the European Space Agency, ESA, in collaboration with NASA, with a launch planned in 2018. The spacecraft is designed to approach the Sun to within 0.28 AU at perihelion of a highly eccentric orbit. The proximity with the Sun will also allow its observation at uniformly high resolution at EUV and visible wavelengths. Such observations are central for learning more about the magnetic coupling of the solar atmosphere. At a later phase in the mission the spacecraft will leave the ecliptic and study the enigmatic poles of the Sun from a heliographic latitude of up to 33○.A central instrument of Solar Orbiter} is the Polarimetric and Helioseismic Imager, SO/PHI. It will do full Stokes imaging in the Landé g = 2.5 Fe I 617.3 nm line. It is composed of two telescopes, a full-disk telescope and a high-resolution telescope, that will allow observations at a resolution as high as 200 km on the solar surface. SO/PHI will also be the first solar polarimeter to leave the Sun-Earth line, opening up new possibilities, such as stereoscopic polarimetry (besides stereoscopic imaging of the photosphere and stereoscopic helioseismology). Finally, SO/PHI will have a unique view of the solar poles, allowing not just more precise and exact measurements of the polar field than possible so far, but also enabling us to follow the dynamics of individual magnetic features at high latitudes and to determine solar surface and sub-surface flows right up to the poles.In this paper an introduction to the science goals and the capabilities of SO/PHI will be given, as well as a brief overview of the instrument and of the current status of its development.


This chapter explains the ratification, main contents, and prospect of the 1979 Moon Agreements. The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, better known as the Moon Treaty or Moon Agreement, is a multilateral treaty that turns jurisdiction of all celestial bodies (including the orbits around such bodies) over to the participant countries. Thus, all activities would conform to international law, including the United Nations Charter. It has not been ratified by any state that engages in self-launched human spaceflight or has plans to do so (e.g., the United States, the larger part of the member states of the European Space Agency, Russia [former Soviet Union], People's Republic of China, and Japan). As of January 2019, 18 states are parties to the treaty. As the current Moon Agreement has emerged as a problem as the United States and other major powers are not joining it, many lawyers, professors, and scientists urged that the powers ratify it quickly.


Author(s):  
Gerald A. Dekker ◽  
John Moreland ◽  
Jatila van der Veen

Planck is an international mission led by the European Space Agency with significant contribution by NASA, designed to measure the anisotropy of the Cosmic Microwave Background (CMB), the oldest radiation of the universe, with the greatest accuracy and precision of any such CMB experiment to date. The present work was completed as part of the Planck Education and Public Outreach (E/PO) effort to communicate the results of Planck science to the public. The Planck Mission Simulation is a multiplatform, interactive visualization of the mission, from launch to orbital insertion to data gathering operations. The simulation was developed for a number of hardware and software configurations. Originally designed for a multi-screen virtual reality system, the scope of project grew to include other systems, including 3D kiosk displays, stereoscopic televisions, and domed-roomed systems. Implementation factors, technical details, and lessons learned from deployment on various platforms are discussed.


Author(s):  
C. Heinicke ◽  
B. Foing

There is strong interest in lunar exploration from governmental space agencies, private companies and the public. NASA is about to send humans to the lunar surface again within the next few years, and ESA has proposed the concept of the Moon Village, with the goal of a sustainable human presence and activity on the lunar surface. Although construction of the infrastructure for this permanent human settlement is envisaged for the end of this decade by many, there is no definite mission plan yet. While this may be unsatisfactory for the impatient, this fact actually carries great potential: this is the optimal time to develop a forward-looking science input and influence mission planning. Based on data from recent missions (SMART-1, Kaguya, Chang’E, Chandrayaan-1 and LRO) as well as simulation campaigns (e.g. ILEWG EuroMoonMars), we provide initial input on how astronomy could be incorporated into a future Moon Village, and how the presence of humans (and robots) on the Moon could help deploy and maintain astronomical hardware. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


2012 ◽  
Vol 1 (1) ◽  
pp. 77-84 ◽  
Author(s):  
B. Sánchez-Cano ◽  
O. Witasse ◽  
M. Herraiz ◽  
S. M. Radicella ◽  
J. Bauer ◽  
...  

Abstract. Since 2005 the Mars Advanced Radar and Ionospheric Sounding experiment (MARSIS) aboard Mars Express has acquired a unique dataset on the ionosphere of Mars made up of ionospheric soundings taken by the instrument working in its active ionospheric sounding (AIS) mode. These soundings play a role similar to those of modern Terrestrial digisondes in the analysis of our planet ionosphere and have allowed us to dramatically improve our knowledge about the Martian ionosphere. This paper describes this kind of data, which are available from the public Planetary Science Archive, and introduces the MAISDAT tool developed by the European Space Agency to analyze and derive the vertical profile of electron density. Comparisons with radio occultation profiles obtained from Mars Express Radio Science instrument are performed to validate the procedure used in this study.


2021 ◽  
Author(s):  
Geraint Jones ◽  
Colin Snodgrass ◽  
Cecilia Tubiana ◽  

<p>Comets are undoubtedly extremely valuable scientific targets, as they largely preserve the ices formed at the birth of our Solar System. In June 2019, the multi-spacecraft project Comet Interceptor was selected by the European Space Agency, ESA, as its next planetary mission, and the first in its new class of Fast (F) projects [Snodgrass, C. and Jones, G. (2019) Nature Comms. 10, 5418]. The Japanese space agency, JAXA, will make a major contribution to Comet Interceptor. The mission’s primary science goal is to characterise, for the first time, a yet-to-be-discovered long-period comet (LPC), preferably one which is dynamically new, or an interstellar object. An encounter with a comet approaching the Sun for the first time will provide valuable data to complement that from all previous comet missions, which visited short period comets that have evolved over many close approaches to the Sun. The surface of Comet Interceptor’s LPC target will be being heated to temperatures above the its constituent ices’ sublimation point for the first time since its formation.</p> <p>Following launch, in 2029, the spacecraft will be delivered with the ESA Ariel mission to the Sun-Earth L2 Lagrange Point , a relatively stable location suitable for later injection onto an interplanetary trajectory to intersect the path of its target. This allows a relatively rapid response to the appearance of a suitable target comet, which will need to cross the ecliptic plane in an annulus which contains Earth’s orbit.</p> <p>A suitable new comet would be searched for from Earth prior to launch, and after launch if necessary, with short period comets serving as a backup destinations. With the advent of powerful facilities such as the Vera Rubin Observatory, the prospects of finding a suitable comet nearing the Sun are very promising. The possibility may exist for the spacecraft to encounter an interstellar object if one is found on a suitable trajectory.</p> <p>An important consequence of the mission design is that the spacecraft must be as flexible as possible, i.e. able to cope with a wide range of target activity levels, flyby speeds, and encounter geometries. This flexibility has significant impacts on the spacecraft solar power input, thermal design, and dust shielding that can cope with dust impact speeds ranging from around 10 to 70 km/s, depending on the target comet’s orbital path.</p> <p>Comet Interceptor has a multi-spacecraft architecture: it is expected to comprise a main spacecraft and two probes, one provided by ESA, the other by JAXA, which will be released by the main spacecraft when approaching the target. The main spacecraft, which would act as the primary communication point for the whole constellation, would be targeted to pass outside the hazardous inner coma, making remote and in situ observations on the sunward side of the comet. The two probes will be targeted closer to the nucleus and inner coma region.</p> <p>Planned measurements of the target include its nucleus surface composition, shape, and structure, its dust environment, and the composition of the gas coma. A unique, multi-point ‘snapshot’ measurement of the comet- solar wind interaction region is to be obtained, complementing single spacecraft observations made at other comets.</p> <p>We shall describe the science drivers, planned observations, and the mission’s instrument complement, to be provided by consortia of institutions in Europe and Japan.</p>


Sign in / Sign up

Export Citation Format

Share Document