Developing the Planck Mission Simulation as a Multi-Platform Immersive Application

Author(s):  
Gerald A. Dekker ◽  
John Moreland ◽  
Jatila van der Veen

Planck is an international mission led by the European Space Agency with significant contribution by NASA, designed to measure the anisotropy of the Cosmic Microwave Background (CMB), the oldest radiation of the universe, with the greatest accuracy and precision of any such CMB experiment to date. The present work was completed as part of the Planck Education and Public Outreach (E/PO) effort to communicate the results of Planck science to the public. The Planck Mission Simulation is a multiplatform, interactive visualization of the mission, from launch to orbital insertion to data gathering operations. The simulation was developed for a number of hardware and software configurations. Originally designed for a multi-screen virtual reality system, the scope of project grew to include other systems, including 3D kiosk displays, stereoscopic televisions, and domed-roomed systems. Implementation factors, technical details, and lessons learned from deployment on various platforms are discussed.

Author(s):  
J. A. Moore ◽  
B. Gendre ◽  
D. M. Coward ◽  
H. Crisp ◽  
A. Klotz

The 1.0 metre f/4 fast-slew Zadko Telescope was installed in June 2008 approximately seventy kilometres north of Perth at Yeal, in the Shire of Gingin, Western Australia. Since the Zadko Telescope has been in operation it has proven its worth by detecting numerous Gamma Ray Burst afterglows, two of these being the most distant 'optical transients' imaged by an Australian telescope. Other projects include a contract with the European Space Agency (ESA) to image potentially hazardous near Earth asteroids (2019), monitoring space weather on nearby stars (2019), and photometry of a transit of Saturn's moon Titan (2018). Another active Zadko Telescope project is tracking Geostationary satellites and attempting to use photometry to classify various space debris (defunct satellites). The Zadko Telescope's importance as a potential tool for education, training, and public outreach cannot be underestimated, as the global awareness of the importance of astronomy (and space science) as a context for teaching science continues to increase. An example of this was the national media coverage of its contribution to the discovery of colliding neutron stars in 2017, capturing the imagination of the public. In this proceeding, I will focus on the practical aspects of managing a robotic Observatory, focusing on the sustainability of the Observatory and the technical management involved in hosting different commercial projects. I will review the evolution of the Observatory, from its early, single instrument, state to its current multi-telescope and multi-instrument capabilities. I will finish by outlining the future of the Observatory and the site.


2011 ◽  
Vol 41 (2) ◽  
pp. 123-178 ◽  
Author(s):  
Arturo Russo

Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-1990s as an exemplar of a “flexible mission” that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.


Author(s):  
John Chambers ◽  
Jacqueline Mitton

This chapter considers how the very existence of the Moon, the only large satellite in the inner solar system, is a puzzle. The Moon is sufficiently large that one would think of it as a planet if it traveled around the Sun rather than Earth. Much of what the public now knows about the Moon comes from space missions, beginning in the 1960s and early 1970s. Six American Apollo missions each landed two astronauts on the surface. Three of the Soviet Union's unmanned Luna spacecraft touched down on the surface and then returned to Earth. After a long gap, lunar exploration resumed in the 1990s, when NASA's Clementine and Lunar Prospector spacecraft went into orbit. Recently, the pace of exploration has increased again, with the European Space Agency, Japan, China, and India, as well as NASA, all sending missions to the Moon.


Author(s):  
Nergiz Ilhan ◽  
Md Mahbubur Rahim

E-procurement systems are widely discussed in the eBusiness literature in which it is claimed that businesses generally experience three types of benefits (e.g. operational, tactical, and strategic) from implementing these systems. However, limited studies have so far been reported in the e-government literature on the benefits e-procurement systems have provided for the Australian municipality context. This chapter thus reviews the existing literature and reports e-procurement benefits experience of a large Australian municipal council. The findings indicate that the council's experience is limited to the attainment of operational and tactical benefits, and no evidence has been found about gaining any strategic benefits. In addition, several factors are identified that influenced those benefits. The lessons learned from the experience of the council are discussed and contributions made to the e-procurement literature for the public government context are highlighted.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jesús Fernández-Conde ◽  
Jaime Gómez-Saez-de-Tejada ◽  
David Pérez-Lizán ◽  
Rafael Toledo-Moreo

A satellite spacecraft is generally composed of a central Control and Data Management Unit (CDMU) and several instruments, each one locally controlled by its Instrument Control Unit (ICU). Inside each ICU, the embedded boot software (BSW) is the very first piece of software executed after power-up or reset. The ICU BSW is a nonpatchable, stand-alone, real-time software package that initializes the ICU HW, performs self-tests, and waits for CDMU commands to maintain on-board memory and ultimately start a patchable application software (ASW), which is responsible for execution of the nominal tasks assigned to the ICU (control of the satellite instrument being the most important one). The BSW is a relatively small but critical software item, since an unexpected behaviour can cause or contribute to a system failure resulting in fatal consequences such as the satellite mission loss. The development of this kind of embedded software is special in many senses, primarily due to its criticality, real-time expected performance, and the constrained size of program and data memories. This paper presents the lessons learned in the development and HW/SW integration phases of a satellite ICU BSW designed for a European Space Agency mission.


Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Ehsan Honary ◽  
Frank McQuade ◽  
Roger Ward ◽  
Ian Woodrow ◽  
Andy Shaw ◽  
...  

SUMMARYSciSys has been involved in the development of Planetary Aerobots (arial robots) funded by the European Space Agency for use on Mars and has developed image-based localisation technology as part of the activity. However, it is possible to use Aerobots in a different environment to investigate issues regarding robotics behaviour, such as data handling, limited processing power, and limited sensors. This paper summarises the activity where an Aerobot platform was used to investigate the use of multiple autonomous unmanned underwater vehicles (UUVs) by simulating their movement and behaviour. It reports on the computer simulations and the real-world tests carried out and the lessons learned from these experiments.


Inorganics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 139 ◽  
Author(s):  
Robert C. Bowman

Two closed-cycle cryogenic refrigerators were used to generate temperatures of ~18 K via evaporation of liquid hydrogen at the interfaces with radiofrequency and infrared sensors on an Earth-orbiting spacecraft that measured the anisotropy of the cosmic microwave background (CMB) during the European Space Agency (ESA) Planck Mission from June 2009 until October 2013. The liquid hydrogen phase was continuously generated in each Planck Sorption Cryocooler (PSC) by coupling a Joule–Thomson (J–T) expander to hydrogen gas initially pressurized to nominally 3000 kPa (i.e., ~30 bar) and subsequently discharged at pressure of 30 kPa (i.e., ~0.3 bar) by desorption and absorption using LaNi4.78Sn0.22Hx contained in six individual sorbent beds. The pressures were varied by alternately heating and cooling this hydride that included temperature modulation with an integrated Gas-Gap Heat Switch (GGHS). The novel GGHS used the low-pressure hydride ZrNiHx to vary thermal conductance between the bed containing the LaNi4.78Sn0.22Hx sorbent and the rest of the compressor system. The design features and development of these hydride components are described along with details of fabrication and assembly. The results obtained during extended laboratory testing are also summarized. The predictions from this preflight testing are compared to the performance observed while operating in orbit during the Planck Mission. This review ends with a summary of lessons learned and recommendations for improved systems.


2012 ◽  
Vol 1 (1) ◽  
pp. 77-84 ◽  
Author(s):  
B. Sánchez-Cano ◽  
O. Witasse ◽  
M. Herraiz ◽  
S. M. Radicella ◽  
J. Bauer ◽  
...  

Abstract. Since 2005 the Mars Advanced Radar and Ionospheric Sounding experiment (MARSIS) aboard Mars Express has acquired a unique dataset on the ionosphere of Mars made up of ionospheric soundings taken by the instrument working in its active ionospheric sounding (AIS) mode. These soundings play a role similar to those of modern Terrestrial digisondes in the analysis of our planet ionosphere and have allowed us to dramatically improve our knowledge about the Martian ionosphere. This paper describes this kind of data, which are available from the public Planetary Science Archive, and introduces the MAISDAT tool developed by the European Space Agency to analyze and derive the vertical profile of electron density. Comparisons with radio occultation profiles obtained from Mars Express Radio Science instrument are performed to validate the procedure used in this study.


Astrodynamics ◽  
2021 ◽  
Author(s):  
Thomas Uriot ◽  
Dario Izzo ◽  
Luís F. Simões ◽  
Rasit Abay ◽  
Nils Einecke ◽  
...  

AbstractSpacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform various operators who can then plan risk mitigation measures. Such measures can be aided by the development of suitable machine learning (ML) models that predict, for example, the evolution of the collision risk over time. In October 2019, in an attempt to study this opportunity, the European Space Agency released a large curated dataset containing information about close approach events in the form of conjunction data messages (CDMs), which was collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, which was an ML competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying ML methods to this problem domain.


Author(s):  
Amedeo Cesta ◽  
◽  
Gabriella Cortellessa ◽  
Simone Fratini ◽  
Angelo Oddi ◽  
...  

This article contains a retrospective overview of connected work performed for the European Space Agency (ESA) over a span of 10 years. We have been creating and refining an AI approach to problem solving and have infused a series of deployed planning and scheduling systems which have innovated the agency’s mission planning practice. The goal of this paper is to identify strong features of this experience, comment on general lessons learned and offer guidelines for work practice of the future. Specifically, the work considers some key points that have contributed to strengthening the effectiveness of our approach for the development of an end-to-end methodology to field applications: the attention to domain modeling, the constraint-based algorithm synthesis and the relevance of user interaction services.


Sign in / Sign up

Export Citation Format

Share Document