scholarly journals Analysis of Surface Roughness Value When Drilling Magnesiumaz31 Using Taghuci Method

INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 71
Author(s):  
Gusri Akhyar Ibrahim ◽  
Arinal Hamni ◽  
Sri Maria Puji Lestari

Magnesium alloy is one of super alloys material which wide used in manufacturing of automotive, biomedic, sport and electronic components. It was due to very light and resistent to corrosion. Surface roughness value has an important role to estabilish the quality of components. To produce a good surface roughness of machined surface, one of the important thing depends on the friction between the cutting tool and workpiece material when cutting process occurred. The aim of this paper is to analyse the surface roughness values of machined surface when drilling of magnesium alloy AZ31 using design of experiment of Taguchi Method. The experimental trials took place at cutting rotation of 635, 970 and 1420 rpm, feed rate of 0.10, 0.18 and 0.24 mm/rev, diameter tool of 10, 12 and 14 mm. The cutting of magnesium alloy was done by using a convensional drilling machine with TCA –35Erlo. Analysis of variance on the data of surface roughness value was done to get which factor is the most significant. The result shows that the feed rate is the most significant factor that contributed on the surface rougness value of machined surface. The minimum surface roughness value was attained at cutting rotation of 970 rpm, feed rate of 0.10 mm/rev and diameter of tool of 14 mm. Therefore, it can be stated that selecting the low feed rate factor produced low surface roughness value. Another hand, using high cutting rotation resulted low surface roughness value.Keywords—drilling, surface roughness, magnesiun AZ31,Taguchi Method

2008 ◽  
Vol 375-376 ◽  
pp. 406-410 ◽  
Author(s):  
Zhan Qiang Liu ◽  
Peng Zhang ◽  
Peng Guo ◽  
Xing Ai

Surface roughness in a turning operation is affected by a great number of factors. Two of the most important factors are feed rate and the size of the corner radius. Surface roughness can be roughly determined to increase with the square of the feed rate and decrease with increased size of the corner radius. However, wiper insert geometries changed this relationship with the capability to generate good surface roughness at relatively higher feeds by transferring small part of the round insert edges into the straight cutting edges of the pointed insert. The principle of how wiper inserts behave different from conventional inserts as to the effects on the surface roughness is explored in this paper. Experimental study of the surface roughness produced in the turning of hardened mild steels using coated carbide tools with both conventional and wiper inserts is conducted. The test results prove the effectiveness of the wiper inserts in providing excellent surface roughness. The results also suggest that the use of the wiper insert is an effective way that significantly increases cutting efficiency without changing the machined surface roughness in high feed turning operations.


2021 ◽  
Author(s):  
Sonia Ezeddini ◽  
Wajdi Rajhi ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

Abstract Ti-6242 is a super alloy which exhibits the best creep resistance among available titanium alloys and is widely used in the manufacture by WEDM of aircraft engine turbomachinery components. However, the final quality of wire EDMed surface is a great challenge as it is affected by various factors that need optimization for surface integrity and machine efficiency improvement. The aim of this study is to investigate the effect of a set of cutting process parameters such as pulse on time (Ton), servo voltage (U), feed rate (S) and flushing pressure (p) on surface roughness (SR) when machining Ti-6242 super alloy by WEDM process using a brass tool electrode and deionized water as a dielectric fluid. WEDM experiments were conducted, and SR (Ra) measurement was carried out using a 3D optical surface roughness-meter (3D–SurfaScan). As a tool to optimize cutting parameters for SR improvement, Taguchi's signal‐to‐noise ratio (S/N) approach was applied using L9 (3^4) orthogonal array and Lower-The-Better (LTB) criteria. Substantially, the findings from current investigation suggest the application of the values 0.9 µs, 100V, 29 mm/min, and 60 bar for Ton, U, S and p cutting parameters, respectively, for producing a good surface finish quality. Percent contributions of the machining parameters on SR (Ra) assessed based on ANOVA analysis are 62.94%, 20.84%, 11.46% and 4.74% for U, S, Ton and p, respectively. Subsequently, accurate predictive model for SR (Ra) is established based on response surface analysis (RSA). The contour plots for SR (Ra) indicate that when flushing pressure p converges to a critical value (80 bar), a poor-quality surface finish is highly expected with the excessive increase in U and S. Electron microscope scanning (SEM) observations have been performed on machined surface for a wide range of cutting parameters to characterize wire EDMed surface of Ti-6242. SEM micrographs indicate that the machined surface acquires a foamy structure and shows white layer and machining-induced damage that the characteristics are highly dependent on cutting parameters. At high servo-voltage, the decrease in pulse on time Ton and feed rate S results in a large decrease in overall machining-induced surface damage. Moreover, for high servo-voltage and feed rate levels, it has been observed that pulse on time could play a role of controlling the surface microcracks density. In fact, the use of a low pulse duration of cut combined with high servo-voltage and feed rate has been shown to inhibit surface microcracks formation giving the material surface a better resistance to cracking than at high pulse duration.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Yi ◽  
Li Jiao ◽  
Xibin Wang ◽  
Junfeng Xiang ◽  
Meixia Yuan ◽  
...  

Due to the widespread use of high-accuracy miniature and micro features or components, it is required to predict the machined surface performance of the micro milling processes. In this paper, a new predictive model of the surface roughness is established by response surface method (RSM) according to the micro milling experiment of 6061-T6 aluminum alloy which is carried out based on the central composite circumscribed (CCC) design. Then the model is used to analyze the effects of parameters on the surface roughness, and it can be concluded that the surface roughness increases with the increasing of the feed rate and the decreasing of the spindle speed. At last, based on the model the contour map of the surface roughness and material removal rate is established for optimizing the process parameters to improve the cutting efficiency with good surface roughness. The prediction results from the model have good agreement with the experimental results.


2014 ◽  
Vol 941-944 ◽  
pp. 1981-1984
Author(s):  
Gui Lian Wang ◽  
Hai Bo Zhou ◽  
Shu Li Guo ◽  
De Chen Huang ◽  
Ren Bao Jiao ◽  
...  

A kind of elastic coated abrasives used for polishing large mould surface, such as automobile panel mould, is investigated in this research. Many polishing experiments were finished by using elastic coated abrasives in order to study the effects of grit and workpiece material on surface roughness and machining efficiency. It is concluded that surface roughness is minimum and polishing efficiency is the highest when using 120# abrasives at the same condition, surface roughness is the lowest and polishing efficiency is the highest for AISI 1045 steel in three materials. The difficulty of material removal is different if the textures prior to polishing are different in workpiece surface. Surface texture prior to polishing has effects on surface roughness and polishing efficiency. The research results provide foundation for process planning to achieve good surface roughness and high efficiency in the future research.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2083
Author(s):  
Ken-Chuan Cheng ◽  
Chien-Yao Huang ◽  
Jung-Chou Hung ◽  
A-Cheng Wang ◽  
Yan-Cherng Lin

The micro lens array (MLA) has played an important role in optical systems for the past few years, and the precision of pressing dies has dominated the quality of MLAs in glass molding. Few studies have covered the transcription effects on surface roughness of pressing dies for this technology. Therefore, this research utilized pressing dies to produce a sine-wave lens array on glass molding, to transform the Gauss-distributed spotlight into a uniform straight one and then characterize the transcription effects of these lenses. Pressing dies with a sine-wave shape were firstly cut by wire electrical discharge machining (WEDM), and then ultrasonic polishing using diamond abrasives was applied to finish the sine-wave surface with an original roughness of 0.2 μm Ra. Next, the sine-wave lens arrays were pressed by glass molding at the appropriate pressure and temperature, before evaluating the transcription effects of transforming the Gauss-distributed spotlight into a uniform straight one. The result showed that the sine-wave lens array stuck easily to the pressing die and then ruptured during glass molding due to the poor surface roughness of pressing tool. However, the diamond abrasive with appropriate sizes could establish good surface roughness on pressing dies via ultrasonic polishing, and the pressing die with a low surface roughness of 0.08 μm Ra was able to successfully perform MLA in the glass molding. However, only pressing dies with a surface roughness smaller than 0.023 μm Ra could produce precision glass lenses to transform the Gauss-distributed spotlight into a uniform straight one.


JTAM ROTARY ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 183
Author(s):  
Ismail Mansyursyah ◽  
Mastiadi Tamjidillah

Penelitian ini bertujuan untuk mengetahui parameter apa saja yang berpengaruh terhadap kekasaran permukaan pada proses permesinan bubut konvensional dengan material ST 42 dan mengetahui parameter apa saja yang menghasilkan kekasaran permukaan yang baik dengan menggunakan metode Taguchi. Berdasarkan dari penelitian yang telah dilakukan maka diketahui tidak ada parameter yang berpengaruh terhadap kekasaran permukaan material baja ST 42. Parameter yang menghasilkan kekasaran permukaan material baja ST 42 yang paling baik adalah jenis mata pahat JCK dengan feeding 0,115 dan kehalusan 3,42 µm. This study aims to determine which parameters affect the surface roughness of the conventional lathe machining process with ST 42 material and to find out which parameters produce good surface roughness using the Taguchi method. Based on the research that has been done, it is known that there are no parameters that affect the surface roughness of the ST 42 steel material. The parameter that produces the best surface roughness of ST 42 steel material is the type of JCK tool blade with a feeding of 0.115 and a smoothness of 3.42 µm.


2020 ◽  
Vol 14 (1) ◽  
pp. 46-51
Author(s):  
Hirohisa Narita ◽  

Optimum experimental conditions, that realize good surface roughness in feed direction, for a radius end mill against some inclined surfaces is obtained by the Taguchi method. Some cutting features due to the unique shape of the radius end mill are revealed via the degree of influence of various factors, which are calculated by the Taguchi method, and the geometric relationship of some contact states of the tool. The experimental conditions include cutting type, spindle speed, feed rate, depth of immersion, inclination angle, and corner radius. The results revealed that the contact states are highly significant, and can be categorized into three types. Furthermore, bottom and corner edges must be contacted simultaneously in order to obtain good surface roughness.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1174
Author(s):  
Sophal Hai ◽  
Hwa-Chul Jung ◽  
Won-Hyun Shim ◽  
Hyung-Gon Shin

The main objective of the study is to analyze the various cutting parameters to investigate the surface quality of the minor scale diameter of magnesium alloy in the dry turning process using a different tool nose radius (r). The surface roughness (Ra) was gauged, and micro-images produced by scanning electron microscopy (SEM) were reviewed to evaluate the machined surface topography. The analysis of variance (ANOVA), linear regression model and signal-to-noise (S/N) ratio were applied to investigate and optimize the experimental conditions for surface roughness. The study results imply that the feed rate and tool nose radius significantly affected the surface quality, but the spindle speed did not. The linear regression model is valid to forecast the surface roughness. The cutting parameters for optimum surface quality are a combination of a spindle speed of 710 rpm, a feed rate of 0.052 mm/rev and a tool nose radius of 1.2 mm. The machined surface topography contains the feed marks, micro-voids, material side and material debris, but they become smaller and decrease at a lower feed rate, larger tool nose radius and higher spindle speed. These results show the good surface quality of magnesium alloys in a dry turning process, which could be applied in implant, orthopedic and trauma surgery.


INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
Gusri Akhyar ◽  
Suryadiwansa Harun ◽  
Arinal Hamni

Abstract - Magnesium and magnesium alloys is one of materials that worldwide used on automotive components due to very good  strength to weight ratio, resistant to corrosion, lighter compare to steel materials. Other than that magnesium has an advantage in easy to form and good machinability.  Nevertheless, magnesium known as metal which is easy to burned because of magnesium has low melting point. To maintain magnesium from burning quickly when proses machining, it needs to use coolant or lubricant to reduce temperature. Using of coolant when machining process can reduce temperature on cutting tool and work piece material, while using of lubricant can reduce friction between the cutting tool and work piece mateial. However, using of coolant and lubricant can harm for the environment and also coolant difficult to destroyed. Therefore, an alternative method to reduce the temperature when machining of magnesium alloy is using  the rotary cutting tool system. In the rotary cutting tool system, the cutting tool has a time to experience cooling in the period time. Other than aspect of temperature, surface roughness values are representative of surface of quality of produced componens. In this research, surface roughness value of magnesium alloy of AZ31 observed in ranges of work piece cutting speed of  (Vw) 25, 50, 120, 160, 200 m/min, rotary cutting speed of (Vt) 25, 50, 75 m/min, feed rate of (f) 0,05  and 0,10 mm/rev, and depth of cut of 0.2 mm. The turning process was done by using two kinds of diameter of rotary cutting tools are 16 and 20 mm, and without applying of coolant. The results of the research showed that the minimum surface roughness value of machined surface was 0,62𝝻m by using insert with diameter of 16 mm, while the maximum surface roughness value of machined surface was 2,86 𝝻m by using insert with diameter of 20 mm. This result stated that the increase in the diameter of rotary cutting tool gives a significant effect on the produced surface roughness value. Factor of feed rate also gives a significant contribution on the surface roughness value of machined magnesium surface.  The increase in feed rate generated significantly surface roughness value as long as the trials experiments. The produced surface roughness values inversely proportional to the cutting speed of rotary cutting tool.Keywords - magnesium, rotary tool, surface roughness, turning. 


Sign in / Sign up

Export Citation Format

Share Document