polishing efficiency
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lei Zhang ◽  
Chen Ding ◽  
Cheng Fan ◽  
Qian Wang ◽  
Kejun Wang

Abstract Curved surface parts are widely used in aerospace industry, automotive industry and other fields due to their excellent features in aerodynamics, fluid dynamics and thermodynamics. Compared with the modeling technology of the curved surface, the development of the processing technology of the curved surface is slightly behind. In order to improve the processing quality and efficiency of the curved surface, this paper independently developed a five-axis CNC polishing machine tool, and studied the pre-processing and the post-processing when machining the curved surface. Taking a metal shell of the mobile phone as an example, three different paths are planned for the flat surface and the curved surface respectively, and a method for generating the tool path is proposed. The kinematics model of the five-axis CNC machine tool is established, which is used to obtain the calculation formula of the movement amount of each axis when polishing in the flat surface and the curved surface of the metal shell. The polishing effects of the different paths about the surface quality and the polishing efficiency of the metal shell are studied through the polishing experiments, and the polishing path with the best surface quality and the highest polishing efficiency is found.


2021 ◽  
Vol 7 (2) ◽  
pp. 77-80
Author(s):  
Sven Simeunovic ◽  
Christiane Jung ◽  
Dominik Mory ◽  
Daniel Seiler ◽  
Michael de Wild

Abstract With the introduction of novel automated polishing methods, more attention has recently been paid to postprocessing methods of metallic implants. One such method is the polishing process known as DryLyte®. The most significant difference to previous electropolishing methods is the use of solid organic polymer particles activated with sulfonic acid acting as the electrolyte. The solid particle electrolyte raises new question in terms of polishing results for small features as well as overall polishing quality of metallic surfaces. The aim of this study was to determine the quality of the polishing process for titanium rods with different initial surface roughness and with tapped holes in three different orientations (0°, 45°, 90°) by subjecting them to the DryLyte® polishing process for 30 min. In addition, the influence of the process parameters voltage and the anodic time T2 during the treatment on the resulting surface quality and the polishing efficiency was determined. In conclusion, the dry electrochemical finishing process has shown great smoothing capabilities for titanium even with small, tapped holes. The Ra values were lowered significantly throughout all titanium samples after 30 min polishing time.


2021 ◽  
Author(s):  
Zuofa Liu ◽  
Jie Zhou ◽  
Hang Wang ◽  
Qiuyun Wang ◽  
Qiang Liang ◽  
...  

Abstract In this work, a laser polishing-hardening (LPH) method with integration and high efficiency for the treatment of AISI D2 tool steel was proposed, and the effects of laser hardening (LH), laser polishing (LP) and LPH treatments on the surface topography and microhardness were examined. The results show that LH method had a negligible effect on the surface roughness of the treated sample, while the surface roughness Ra of LP and LPH specimens was reduced by 74.6% and 80.9% respectively, indicating that the milled surface topography had been significantly improved, especially LPH was more effective in reducing the roughness. Besides, the polishing efficiency of LPH was 10 times that of LP approach. In terms of hardness improvement, the near-surface microhardness of LH and LPH samples increased by 1.5 times and 1.3 times respectively, and the effective hardened zone (EHZ) depth was 0.42 mm and 0.24 mm respectively, demonstrating that these two laser processing methods had a beneficial effect on the cross-section microhardness of D2 tool steel, while the increase of LP on the microhardness was insignificant. The comprehensive analysis of the surface morphology and microhardness of LPH specimen indicates that LPH was a feasible laser surface treatment method for D2 tool steel. On the premise of ensuring a high surface finish, the polishing efficiency can be remarkably improved, the subsurface microhardness and EHZ depth of processed specimen can be also significantly enhanced, which provided a feasible idea for the application of laser surface treatment technology in industrial mold production.


2021 ◽  
Author(s):  
Yinhui Xie ◽  
Jinxing Yang ◽  
Weilong Huang ◽  
Jun Li

Abstract In view of the disadvantages of existing planning methods used in CCOS techniques, such as low efficiency and workpieces contain obvious mid-frequency error after polishing, a new tool-path planning method based on improved Prim algorithm was proposed, of which the core idea was consist by following steps: surface data reading, mesh generation, distribution of resident points determining and polishing path generating. After that, comparison of raster path and the path based on improved Prim algorithm was carried out by simulated experiments from aspects of path length and polishing texture. The results indicated that the path based on improved Prim algorithm could shorten path length as well as increase polishing efficiency, moreover, both the texture and mid-frequency errors can be improved by using the path presented. It was concluded that the presented planning method could improve polishing efficiency and machining quality. Then, comparison between raster path and the path based on improved Prim algorithm was carried out by simulated experiments, from two sides of path length and polishing texture. The results indicated that the path based on improved Prim algorithm could shorten path length as well as increase polishing efficiency, moreover, both the texture and mid-frequency errors would be improved by using the presented path. Finally, the validity of presented planning method was proved in machining experiments.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1561
Author(s):  
Ken-Chuan Cheng ◽  
Kuan-Yu Chen ◽  
Hai-Ping Tsui ◽  
A-Cheng Wang

Magnetic abrasive finishing (MAF) is a fast, high efficiency and high-precision polishing method on the surface machining of the metals. Furthermore, MAF also can be utilized to polish the stainless tubes in industrial applications; however, stainless tubes are often a non-magnetic material that makes it difficult for the magnetic field line to penetrate into the stainless tubes, thus reducing the magnetic forces in the inner tubes polishing. That is why stainless tubes are not easy to finish using traditional MAF. Therefore, magnetic finishing with gel abrasive (MFGA) applies gels mixed with steel grit and abrasives that were developed to improve the polishing efficiency and surface uniformity of the steel elements. In this study, a guar gum or silicone gel mixed with steel grit and silicon carbides are used as the magnetic abrasive gel to polish the stainless inner tubes. A DC motor was used to control the rotation speed of the chuck and an AC induction motor connected with an eccentric cam to produce the reciprocating motion of the workpiece were utilized to finish the inner surface of stainless tubes in the polishing process. The parameters of abrasive concentration, abrasive particle sizes, rotation speeds of motor and electric currents were used to investigate the surface roughness and the removal of materials from the stainless tubes. The experimental results showed that since guar gum had better fluidity than the silicone gel did, guar gum created excellent polishing efficiency in MFGA. Furthermore, the surface roughness of the stainless tube decreased from 0.646 μm Ra to below 0.056 μm Ra after processing for 30 min with the parameters of current 3A, gel abrasive with guar gum, rotational speed 1300 rpm and vibration frequency 4 Hz.


Author(s):  
Lara Pepita de Souza Oliveira ◽  
Lara Pepita de Souza Oliveira ◽  
Moises Aleli Gomes ◽  
Jefter Haad Ruiz da Silva ◽  
Cláudia Cândida Silva ◽  
...  

Direct restorations in composite resin require superficial rugosity appropriate to guarantee a surface free of biofilm buildup, which interferes with the durability of the restoration, its properties and the aesthetic aspect. Thus, it is relevant to know the behaviour of the finishing and polishing systems. The in vitro study aimed to compare the polishing efficiency of three different polishing systems in promoting the surface smoothness of a nanocomposite resin. Sixty specimens of the nanocomposite resin Filtek Z350 XT (3M) were made, randomly divided into three groups (n=20), according to the tested polishing systems: Enhance (Dentsply), DFL Polishers, and Sof-Lex Spiral (3M). The surface rugosity of the samples was measured by means of the rugosimeter equipment. The data were analysed through statistical tests: ANOVA two-way and post-hoc Tukey. The results indicated Sof-Lex (3M) polishing discs as the ones with the lowest average surface rugosity (0.13µm), presenting statistically significant results (p<0.05); followed by the abrasive rubbers of the DFL system (0.17 µm) and the Enhance system (Dentsply), which showed greater average surface rugosity (0.30 µm). The lowest surface rugosity of the composite resin evaluated in this study (Z350 XT- 3M) was obtained after polishing with the multi-step system (Sof-Lex), from the same manufacturer.


2021 ◽  
Vol 13 (5) ◽  
pp. 874-882
Author(s):  
Lijun Wang ◽  
Yongbo Wu

In this work, a new polishing method for zirconia ceramics was firstly proposed, which combined dielec-trophoresis effect with magnetic compound fluid polishing. A key experimental device was designed and constructed, and the influence behavior of dielectrophoresis phenomenon on the polishing efficiency, surface roughness and glossiness of zirconia ceramic workpiece were investigated. Also, the effects of voltage, electrode shape and electric field parameters on the polishing results were deeply discussed. The results showed that when the magnetic field was stronger, the polishing efficiency would become higher, while the surface quality of the workpiece getting worse. And the glossiness was positively correlated with the surface roughness. Moreover, the smaller the electrode shape and the larger the electric field gradient caused the better dielectrophoresis-assisted effect. It was indicated that when the electrode shape was a circle with a diameter of 20 mm and the voltage was 1500 V, the material removal efficiency was improved by 36.4% while ensuring the surface quality of zirconia ceramics.


Sign in / Sign up

Export Citation Format

Share Document