scholarly journals KELIMPAHAN BAKTERI RIZOSFER PADA SISTEM PHT-BIOINTENSIF SERTA KEMAMPUAN ANTAGONISMENYA TERHADAP Sclerotium rolfsii PADA KEDELAI

2014 ◽  
Vol 14 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Abdjad Asih Nawangsih ◽  
Tita Widjayanti . ◽  
Yana Anisa .

Abundance of rhizospheric bacteria on the IPM-Biointensive system and their antagonistic activities toward Sclerotium rolfsii on soybean.  Abundance of beneficial microorganisms in the soil is one of the active soil indicators the success of integrated pests management (IPM) system.  Some beneficial groups of microorganisms can be used as biocontrol agents.  This experiment was conducted to evaluate the effects of IPM-Biointensive by integrated application of resistant varieties, rice-straw mulch, and biocontrol agents on the abundance of rizospheric bacteria of soybean, also to evaluate the suppressiveness of the bacteria to the mycelial growth of S. rolfsii in vitro.  Abundance of the bacteria was determined by isolation using serial dilution and plate-count techniques.  Suppression to the fungus was evaluated using dual culture technique.  Heat tolerant bacteria had the highest abundance (ranged 1011-1012 cfu/g soil), followed by non-fluorescence bacteria (1011 cfu/g soil), chitinolytic bacteria (106-109 cfu/g soil), and fluorescence bacteria with population range was 103-108 cfu/g soil.  Gepak kuning variety grown with application of rice-straw mulch and PGPR (V2M1P1) caused the highest abundance of rizosphere bacteria.  One of the heat tolerant bacteria, i.e. TP32, caused the highest suppression to the mycelial growth of S. rolfsii in vitro.  Based on the morphology, physiology, and biochemical properties, the isolate was identified as Bacillus sp. 

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


Author(s):  
Akhilesh Kumar Kulmitra ◽  
Neha Sahu ◽  
V.B. Sanath Kumar ◽  
Thejesha A. G. ◽  
Amlan Ghosh ◽  
...  

The five different bio-agents viz., Trichoderma viride, T. harzianum, T. virens, Pseudomonas fluorescens and Bacillus subtilis were evaluated against Pyricularia oryzae at four and eight days after incubation through dual culture technique. Among the five different bio-agents, highest per cent inhibition of mycelial growth of fungus was recorded in T. virens i.e. 67 per cent and 70 percent after four and eight days after incubation respectively with mean of 68.5 per cent followed by Trichoderma viride with the inhibition of 61 and 63 per cent respectively with mean of 62 per cent. The Pseudomonas fluorescens did not show any inhibition of mycelial growth of P. oryzae as the pathogen over grew the bio-agents.


2021 ◽  
Vol 50 (2) ◽  
pp. 423-425
Author(s):  
Ramesh Kumar ◽  
Sanjeev Kumar ◽  
Balkishan Chaudhary

Six biocontrol treatments viz., Trichoderma viride, Trichoderma virens, Trichoderma harzianum, T. harzianum + T. viride, T. harzianum + T. virens and T. viride + T. virens were evaluated to test the antagonism against Fusarium verticillioides under in vitro conditions. The maximum growth inhibition (90.6%) was recorded in consortium of T. harzianum + T. viride in dual culture technique . The volatile and non volatile compounds from the consortium of T. harzianum + T. viride also found best and suppressed the mycelial growth of F. verticillioides to the tune of 83.90 and 84.61 %, respectively. Bangladesh J. Bot. 50(2): 423-425, 2021 (June)


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sutha Raja Kumar ◽  
R., Arulselvi A ◽  
Rex Immanuel R ◽  
Jaiganesh V ◽  
Thamarai Selvi M.

The present studies were undertaken to investigate the effect of fungal and bacterial biocontrol agents against stem rot of groundnut. The result of the dual culture technique indicated that Trichoderma isolates inhibited the growth of S. rolfsii. Among the isolate T. viride (Tv1 ) produced maximum reduction of mycelial growth. This was followed by the isolates T. harziaum and T. virens which restricted the mycelial growth when compared to control. Among the isolates T. viride (Tv1 ) at a conc. of 10, 20, 30 and 40 per cent conc. showed an increase in the inhibition of the mycelia growth recording 22.15, 15.27, 8.75 and 0.00 mm respectively. The next best in antagonist was T. harzianum. Among the Pseudomonas fluorescens isolates, PfI3 produced maximum reduction of mycelial growth accounting for 74.97 per cent reduction over control. Also, a general increase in the conc. of the Antagonistic culture filtrate showed an increase in the inhibition of the mycelial growth of the test pathogen.


2020 ◽  
Vol 73 (4) ◽  
pp. 787-792
Author(s):  
Alyssa Swehla ◽  
Abhay K. Pandey ◽  
Ramakrishnan M. Nair

AbstractIn the rice-fallow system, dry root rot (DRR) is an emerging disease of mungbean (Vigna radiata (L.) R. Wilczek var. radiata) caused by the necrotrophic fungus Macrophomina phaseolina. The pathogen causes extensive production losses. In this study, the bioactivity of four Trichoderma harzianum isolates, namely Th-Dharwad, Th-Raichur, Th-Niphm, and Th-Udaipur procured from the Indian research institutes were evaluated against M. phaseolina of mungbean by the dual culture technique. The efficacy of these T. harzianum isolates were also compared with the effective fungicides such as thiram and carbendazim by the poison food method. Results showed that among the T. harzianum isolates, isolate of Th-Raichur was most effective, exhibiting 76.96% mycelial growth inhibition of the test pathogen. As compared to the thiram, carbendazim was more effective, and exhibited 100% mycelial growth inhibition of the test pathogen. In addition, carbendazim was also more effective than the isolate of Th-Raichur. In the sick pot experiment, mungbean seeds treated with Th-Raichur isolate showed a lower percent incidence of DRR (20%) than the untreated seeds (86.6%). The biological spectrum of Th-Raichur isolate was examined against M. phaseolina isolated from the different hosts such as urdbean and vegetable soybean, alongwith two other root pathogens, namely Fusarium solani of mungbean, and Sclerotium rolfsii of urdbean. The isolate of Th-Raichur showed maximum antagonistic activity against the pathogens M. phaseolina and F. solani of mungbean. Thus, Th-Raichur isolate can be used as a potential fungal biocontrol agent for the reduction of DRR in mungbean.


2016 ◽  
Vol 5 (2) ◽  
pp. 73-80
Author(s):  
Khadija N. Hassan ◽  
Josphat C. Matasyoh ◽  
Marc Stadler

Phytopathogens are known to be the leading cause of important plant diseases which result in significant losses in agricultural crops. The need to maintain the level of yield both quantitatively and qualitatively is vital in order to curb the losses. So far there has been a positive advance recognized in research to the use of tropical fungi as biocontrol agents. The objective of this study was to screen for antagonistic tropical fungi against selected phytopathogens of maize (Zea mays L.) and beans (Phaseolus vulgaris L.) namely Fusarium graminearum, Fusarium moniliforme, Pythium ultimum, and Colletotrichum lindemuthianum in vitro. A total of 87 tropical fungi isolates were collected from Kakamega tropical rainforest, Kenya. Dual culture experiment was carried out to screen the tropical fungi against the selected phytopathogens. The bioassay was performed in a completely randomised design in triplicate and the inhibition zones recorded after every week for three weeks. Differential biocontrol ability among nine tropical fungi was noticed against F. moniliforme with the percentage inhibition increasing over time. Fusarium solani was the most active antagonist with an inhibition of 64% while Phaeomarasmius sp. had the lowest activity of 19.1% against F. moniliforme. Epicoccum sp. inhibited the mycelial growth of P. ultimum by 38% and also inhibited C. lindemuthianum by 58%. None of the fungal antagonists inhibited the mycelial growth of F. graminearum. The outcome of this study indicates that tropical fungi can be used as biocontrol agents and can be further explored and developed into effective fungicides for management of phytopathogens.


2018 ◽  
Vol 10 (3) ◽  
pp. 813-817
Author(s):  
Erayya SL ◽  
Nandani Shukla ◽  
Kahkashan Arzoo ◽  
J. Kumar

In vitro efficacy of twenty five Trichoderma isolates (twenty were TCMS series viz., TCMS 2, 4, 5, 12, 14a, 14b, 15, 16, 24, 32, 34, 36, 43, 60, 62, 64, 65, 72, 85 and 93, and five Th series; Th 1, 3, 14, 19 and 32) were ascertained for their antagonistic activity against few major plant pathogenic oomycetes namely, Phytophthora infestans, P. parasitica and Pythium aphenidermatum using dual culture technique. P. infestans was isolated from infected potato leaves and Pythium aphenidermatum from infected brinjal. P. parasitica culture was collected from Central Potato Research Institute (CPRI), Simla. The present study was conducted at Biological Control Laboratory, Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar. All the 25 Trichodrma isolates were found significantly effective against the test pathogens. TCMS-36 and TCMS-72 were found highly effective against P. aphinidermatum with 59.57 per cent inhibition of radial growth of the fungus. Maximum reduction in mycelial growth of P. infestans was recorded with isolate TCMS-64 (60.40%) followed by TCMS-65 (59.41%), TCMS-34 (58.42%), TCMS-24, TCMS-43 and TCMS-93 with 57.43 per cent inhibition. While, maximum inhibition of P. parasitica was recorded with TCMS-4 (92.75%) followed by TCMS-36 (92.23%), TCMS-2 (91.71%), TCMS-14a (91.17%) and TCMS-32 (90.67%). The selected potential isolates may be applied to sustainable and eco-friendly management of many major crop diseases caused by the oomycetes and other fungi.


2016 ◽  
Vol 56 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Jahanshir Amini ◽  
Zahra Agapoor ◽  
Morahem Ashengroph

AbstractIn this study, about 112 isolates ofStreptomyceswere isolated from chickpea rhizospheric soils. Among the isolated strains, five showed strong inhibitory effects against chickpea Fusarium wilt caused byFusarium oxysporumf. sp.ciceris in vitrousing plate assay and selected for further studies. The selected strains were identified asStreptomycesspp. based on morphological and biochemical characterization as well as 16S rDNA sequences analysis. Our results assigned them to strains related to genus ofStreptomyces.In vitro, antagonistic effects ofStreptomycesstrains against the disease were evaluated through the dual-culture method, volatile and non-volatile metabolites, siderophore, protease and chitinase production. All bacterial strains inhibited mycelial growth of the pathogen ranging from 26 to 44.2% in dual culture assay. The non-volatile extract of five of theStreptomycesstrains inhibited more than 50% growth of the pathogen, whereas volatile compounds were less effective on mycelial growth inhibition (20.2 to 33.4%). The ability of the biocontrol agents to produce siderophore and protease were varied, whereas, production of chitinase was detected for all strains. Results of the greenhouse assay indicated that all biocontrol agents reduced disease severity (ranging from 38.7 to 54.8%). Accordingly, strain KS62 showed higher control efficacy (54.8%). In addition, the biomass of chickpea plants (plant height and dry weight) significantly increased in plants treated withStreptomycesstrains compared to non-bacterized control. The results of this study showed that it may be possible to manage chickpea Fusarium wilt disease effectively by usingStreptomycesspecies, as biocontrol agents. Therefore, evaluating their efficiency under field conditions is needed.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


Sign in / Sign up

Export Citation Format

Share Document