scholarly journals MEMPELAJARI KARAKTERISTIK FISIK BIJI KAKAO (Theobrema cacao L.) PADA SUHU PENGERINGAN YANG BERBEDA

Author(s):  
Sri Waluyo ◽  
Tri Wahyu Saputra ◽  
Nikita Permatahati

Drying is a common process step for agricultural grain products for ease of handling and to achieve the desired quality levels. One of the commodities that have high economic value produced by farmers in Lampung Province is cocoa beans. The drying process may change the physical properties of the cocoa beans and affect the processing of cocoa beans at a later stage. This study aims to determine the effect of drying temperature on changes in the physical properties of cocoa beans such as dimension, volume, weight, surface area, true density, bulk density, porosity, sphericity, and angle of repose. This research was applied to fresh non-fermented cocoa beans in testing. The cocoa beans were dried at temperatures of 40, 50 or 60oC. The research data were then statistically tested using paired sample T-Test at the 95% level to determine whether there is any effect of drying temperature on changes in its physical properties. The results showed a significant effect of drying temperature on weight, volume, geometric mean diameter (Dg), surface area, bulk density, porosity, and angle of repose of cocoa beans. Meanwhile, the sphericity and true density parameters did not significantly change. Keywords: cocoa beans, drying, physical properties

2016 ◽  
Vol 44 (2) ◽  
Author(s):  
Shrikant Baslingappa Swami ◽  
N.J. Thakor A.M. Gawai

<p>The physical properties, viz., geometric diameter, surface area, sphericity, volume, bulk density, true density and angle of repose was measured for  four  cashew varieties <em>viz</em>., <em>Vengurle 1, Vengurle 3, Vengurle 4</em>  and <em>Vengurle 7</em> at different moisture content (15 to 87% db). For <em>Vengurle</em> 1 as the moisture content increased, the physical properties i.e., geometric mean diameter, volume, surface area, true density and angle of repose increased from 20.8 to 22.1 mm, 3485 to 4416 mm<sup>3</sup>, 1355 to 1540 mm<sup>2</sup>, 984 to 1030 kg m<sup>-3</sup> and 32 to 37˚, respectively. The sphericity and bulk density decreased from 74.2 to 71.4 per cent and 490 to 418 kg m<sup>-3</sup> respectively. For <em>Vengurle 3</em> geometric mean diameter, volume, surface area, true density and angle of repose increased from 27.2 to 28.6 mm, 7912 to 9169 mm<sup>3</sup>, 2320 to 2567 mm<sup>2</sup>, 1020 to 1048 kg m<sup>-3</sup> and 33 to 35.5˚, respectively. The sphericity and bulk density decreased from 75.5 to 75.2 per cent and 531 to 470 kg m<sup>-3</sup> respectively. For <em>Vengurle 4</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 21.0 to 24.1mm, 3362 to 5113 mm<sup>3</sup>, 1391 to 1828 mm<sup>2</sup>, 970 to 1030 kg m<sup>-3</sup> and 32.5 to 38˚,  respectively. The sphericity and bulk density decreased from 65.8 to 66.8 per cent, 517 to 462 kg m<sup>-3</sup>, respectively. For <em>Vengurle 7</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 24.2 to 24.9 mm, 5102 to 5547 mm<sup>3</sup>, 1840 to 1941 mm<sup>2</sup>, 998 to 1045 kg m<sup>-3</sup> and 33 to 38˚, respectively. The sphericity and bulk density decreased from 65.4 to 65.8 per cent, 518 to 438 kg m<sup>-3</sup>, respectively.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 391-397 ◽  
Author(s):  
SWAPNIL G. JAISWAL ◽  
BHUSHAN R. DOLE ◽  
SANGRAM K. SATPATHY ◽  
S.N. NAIK

Seabuckthorn is a highly perishable fruit found in trans-Himalayan region and North-Eastern part of India. It has enormous nutritional and medicinal properties. Physical attributes of fruits play an important role in the design of machines to meet various harvest and post harvest operations. In the present study properties like dimensions, true density, bulk density, sphericity, porosity and angle of repose were measured and correlated with the mass of the fruit. In addition linear, polynomial, quadratic, logarithmic and exponential models were used for mass and surface area. The length, diameter, thousand berry weight, geometric mean diameter, arithmetic mean diameter, surface area, aspect ratio, angle of repose, sphericity, porosity, true density, bulk density, moisture content were found in the range of 6.5-7.5, 4.74-6.28, 362.67-910.14, 5.49-6.99, 6.17-6.24, 76.87-154.76, 72.81-83.73, 3.59-6.82, 65.84-90.47, 17.05-60.07, 647.19-1399.24, 453.81-725.88, 84.53-87.34 respectively. Polynomial model was suited to be best for mass with length and diameter. Polynomial model between surface area and geometric mean diameter gave highest R2 of 0.981.


Author(s):  
Parichart Sathongpan ◽  
Rosnah Shamsudin ◽  
Jaturapatr Varith ◽  
Nur Farhana Abd Rahman

Rice is a staple food in the world market, especially in the Asian region. In each country, the characteristics of rice will be different in terms of shape, grade and size. The quality of rice depends largely that demonstrate the quality of that rice species. At present, information on rice varieties is still limited regarding the physical properties of Malaysian and Thai rice. Therefore, it is important to compare rice cultivars based on origin. The objective of this research is to determine and compare the physical properties of Malaysian and Thai rice. 1 kilogram of Malaysian and Thai rice were each processed into powder by way of grinding and were then prepared for physicochemical measurement by sieving the produced rice powders with a size of 2mm to get rid of foreign objects. The physical parameters measured were length, width, length/breadth ratio, thickness, density, grain shape, surface area, bulk density, true density, porosity, sphericity, aspect ratio, thousand weight kernels angle of repose, colour (L, a*, b*) and hardness. The results of the study showed no significant differences (p>0.05) in terms of length, width, length/breadth ratio, true density, porosity, sphericity, aspect ratio, angle of repose, Lightness (L) and b*. However, there is a significant variation (p < 0.05) between Malaysian and Thai rice in terms of thickness, surface area, bulk density, thousand weight kernels, colour (a*) and hardness parameters. The evaluation of the quality of Malaysian and Thai rices can be a guide or reference for the grading and sorting processing sectors. 


Author(s):  
P. C. Vengaiah ◽  
S. Kaleemullah ◽  
M. Madhava ◽  
A. Mani ◽  
B. Sreekanth

Some physical properties of palmyrah fruit were investigated in this study. The average values of major, medium, minor and geometric mean diameters of fresh whole palmyrah fruit were 11.54,10.45, 9.85 and 10.64 cm respectively at 47.34 % (w.b) moisture content whereas that of palmyrah nut were 8.59, 7.35, 4.99 and 6.79 cm respectively at 8% (w.b) moisture content. Sphericity, surface area and aspect ratio were found to be 91.94%, 359.17 cm2 and 0.90 for fruit and whereas that of nut were 79.19%, 145.16 cm2 and 0.86 respectively. The average mass of the individual palmyrah fruit and nut was 927.78 and 248.10 g whereas bulk density was 525.92 and 693.0 kg/m3 respectively. The coefficient of static friction on mild steel, glass and plywood surfaces were 0.27, 0.21 and 0.25 for palmyrah fruit and 0.36, 0.28 and 0.27 for nut respectively. The angle of repose of palmyrah fruit and nut were 30.77 and 44.03 respectively.


2009 ◽  
Vol 55 (No. 4) ◽  
pp. 165-169 ◽  
Author(s):  
M.C. Ndukwu

The research looked at some selected physical properties of <I>Brachystegia eurycoma</I>, such as axial dimension, roundness, sphericity, surface area, bulk density, solid density, porosity, and volume which are essential in the design and construction of the processing and handling equipments of <I>Brachystegia eurycoma</I>. All the above physical properties measured showed some deviations from the average values which is typical of agricultural biomaterials. Solid density showed the highest deviation of 4.04 g/mm<sup>3</sup> while the volume showed the least deviation of 0.01 mm<sup>3</sup> when compared to those of other physical properties. The angle of repose increased with the increase in the moisture content with a coefficient of determination of 0.98.


Author(s):  
Elton A. S. Martins ◽  
André L. D. Goneli ◽  
Cesar P. Hartmann Filho ◽  
Munir Mauad ◽  
Valdiney C. Siqueira ◽  
...  

ABSTRACT Safflower is an oil crop and its oil can be used for food and industrial purposes. However, there is little information about the physical properties of these grains, which is important for the planning and execution of post-harvest stages. Thus, this study was carried out with the aim of evaluating the effect of drying on the main physical properties of safflower grains. Safflower grains were harvested with an initial moisture content of approximately 0.445 decimal d.b. (dry basis) and subjected to drying in an oven with forced air circulation at 40 °C, until the grains reached a final moisture content of 0.073 ± 0.008 decimal d.b. During the drying, bulk density and true density, porosity, thousand-grain mass, circularity, sphericity, projected and surface area, and surface-volume ratio were measured. Based on these results, it is concluded that all gravimetric and geometrical characteristics of safflower grains were reduced due to the reduction of moisture content, except for the surface-volume ratio.


2021 ◽  
Vol 7 (2) ◽  
pp. 083-090
Author(s):  
Ubong Edet Assian ◽  
Akindele Folarin Alonge

Kariya kernel is very rich in essential fats, oils and other valuable nutrients which may find applications in many food formulations. To harness these nutrients, processing equipment and machines are to be used. In order to effectively design these machines, the values of some physical properties of kariya nut and kernel are needed. In this study, some physical properties of the kariya nut and kernel were investigated. Results showed that mean major diameter, intermediate diameter, minor diameter and unit mass obtained at the nut moisture content of 19.83 ± 3.71 (w.b.) were 14.16 ± 0.79 mm, 10.17 ± 0.36 mm, 9.78 ± 0.28 mm and 0.503 ± 0.05g, respectively while the corresponding values obtained at the kernel moisture content of 8.89 ± 2.22% (w.b.) were 9.07 ±0.72 mm, 7.32 ±0.49 mm, 7.08 ± 0.41 mm and 0.328 ± 0.03 g, respectively. The values of calculated geometric mean diameter were 11.20 ±mm and 7.77 ± 0.36 mm, for the kariya nut and kernel, respectively. The skewness value of the sample distribution of 0.08 and -0.24 were recorded for the kariya nut and kernel, respectively. The sphericity, surface area, volume, density, bulk density and porosity were 79.27 ± 3.07%, 394.75 23.13 mm2, 738.37 ± 64.96 mm3 , 681.1 ± 20 kg/m3, 440.24 ± 0.04 kg/m3 and 36.65 ± 0.74% ; and 85.97 ± 5.27%, 189.85 ± 17.34 mm2, 246.71 ± 33.60 mm3, 1342.1 ± 136.23 kg/m3, 773.06 ± 0.06 kg/m3 and 42.28 ± 4.10% for the kariya nut and kernel respectively.


Author(s):  
Ajay A.,

The physical properties of seeds are very important to optimize the design parameters of various agricultural equipment used in their production, handling, and storage processes. Determination and use of these properties are also essential for the development of optimum seed metering mechanism and also in the design of a hopper for a planter for precise sowing of seeds. Physical properties such as length, surface area, breadth, roundness, equivalent diameter, sphericity, angle of repose, and coefficient of friction were determined for the development of the seed metering unit. The physical properties of seeds were calculated initially. Three varieties of maize seed Rasi-3033, NMH-589, and KMH-2589. The mean values of seed length, width, thickness, sphericity, geometric mean diameter, surface area, bulk density, coefficient of static friction, angle of repose, and thousand kernel weight were 11.00 mm, 7.75 mm, 4.58 mm, 0.65, 7.09 mm, 158.14 mm2, 746.4 kg m-3, 0.60, 28.17o and 0.23 kg, respectively. These properties were used in the development of efficient planter components to work effectively


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Aminu Saleh

Post-harvest processes of millet rely on labour-intensive manual operations in Nigeria while its produce is associated with contaminants. A manually-operated destoner was developed to increase grain value for commercial production and reduce drudgery. To construct the destoner sieves, physical properties of one thousand randomly selected grains were determined digital Vernier callipers. Millet grains to be destoned was fed through the upper portion of the destoner being operated through the crank handle while the pure grains were collected at the discharge outlet. Results obtained shows the geometric diameter of the grains increase progressively from 3.51-4.22mm as moisture content increases. A screen aperture of 3.5mm was constructed. Grains’ surface area, volume and sphericity increased from 22.67-34.82mm², 8.19-13.98mm³ and 0.691-0.776g respectively. Mass, true density and terminal velocity of 1000 seed increased from 13.56-43.84g, 1548.91-1689.87kg/m³ and 2.69-4.58m/s respectively. The bulk density of millet also increased as moisture content increases but decreased beyond 12.5% moisture level indicating that millet floats on  water and was transpoted with the aid of an auger. About 50kg of millet was poured into the destoner to occupy its  ⅓ capacity while the remaining ⅔ was filled with water. Destoner output was  at 95% efficiency.Key words: Destoner, Millet, Processing, Properties, Contaminants


2013 ◽  
Vol 27 (4) ◽  
pp. 491-494 ◽  
Author(s):  
D. Zare ◽  
A. Bakhshipour ◽  
G. Chen

Abstract Physical properties of cumin and caraway seeds were measured and compared at constant moisture content of 7.5% w.b. The average thousand mass of grain, mean length, mean width, mean thickness, equivalent diameter, geometric mean diameter, surface area, volume, sphericity, aspect ratio, true density, bulk density and porosity were measured for cumin and caraway. There are significant differences (p<0.01) in most physical properties of cumin and caraway, except porosity and sphericity


Sign in / Sign up

Export Citation Format

Share Document