scholarly journals Monitoring and support optimization analysis of surrounding rock pressure and initial supporting stress in deep-buried soft rock tunnel

Author(s):  
Q. Liu ◽  
R. Li ◽  
W. Tian ◽  
Y. Wang ◽  
X. Li

Attempting at the problems of surrounding rock pressure and initial supporting stress of deep-buried soft rock tunnel, a soft rock highway tunnel project in Northwest China was monitored on-site for surrounding rock deformation, surrounding rock pressure, initial stress and other items.Discuss the deformation laws and stress characteristics of surrounding rock and steel arch at different construction stages, and compare and analyze the deformation control effect of surrounding rock with different initial lining thickness, different initial elastic modulus and different anchor length through numerical simulation.The results show that the excavation stage of the upper step is a stage where the pressure and deformation of the surrounding rock increase rapidly. The steel arch support is mainly compressed, and the average stress can reach more than 50% of the peak value within 5 days. The stress is mostly higher than the measuring point of the lower step. The initial steel frame support of the upper step and the middle step bears a greater load. The excavation of the upper middle step should be "passed quickly and supported in time", and the construction should adopt The “letting first,then resisting” method appropriately increases the reserved deformation of the surrounding rock to relieve the support stress of the primary steel frame. When the deformation of the surrounding rock and the growth rate of the surrounding rock pressure slow down, the secondary lining can be applied in advance. The research results can provide reference and reference for the design and construction of similar tunnel projects.

2013 ◽  
Vol 353-356 ◽  
pp. 1440-1445
Author(s):  
Jin Hua Xu ◽  
Chuan He ◽  
Yi Zhou ◽  
Hai Bin Wu

This paper studies on a certain highway project which passes through Longmen Shan fault zone, the one triggers 5.12 Wenchuan earthquakes directly. The region where the project resides is characterized by high percentage of soft rock mass, in particular the phyllite. Series of landslide have hitherto happened due to the instability of mountains along the highway which was caused by the great earthquake. Besides, since the phyllite-dominated rock was low-strength and easily soften by water, engineering disasters such as cave-in and large deformation of surrounding rock occurred frequently during the construction of tunnels located along the highway. The existing deformation control criteria fail gradually to fill the requirements of safe tunnelling. The author analyzed monitoring data from different tunnels with different cross-section types and different surrounding rock conditions, referred to relevant norms and eventually proposes new deformation control criteria based on allowable deformation and deformation rate.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wanjun Ye ◽  
Yuntao Wu ◽  
Ming Chen ◽  
Chong Gao

Based on the Zaosheng No. 3 tunnel of the Yinchuan-Xi’an high-speed railway, the surrounding rock pressure, contact pressure of the primary support, and secondary lining and internal force of the secondary lining concrete are systematically tested using a vibrating wire sensor, and the correlation between the advance construction distance and the surrounding rock release rate is studied with finite element software. The results show that the pressure on the surrounding rock is low when the deeply buried soil tunnel is excavated and can be divided into three stages: rapid growth, slow growth, and flattening with time. It is more reasonable to calculate the surrounding rock pressure by using tunnel planning calculations. For the contact pressure, although the value of each measuring point in the inverted arch changes a little, the arch pressure obviously has the characteristics of rapid growth and a sharp rebound. Most of the test points of the second lining concrete show a compression state, which is far less than the ultimate compressive strength. At the same time, the initial support of the tunnel bears a large load, while the secondary lining bears a relatively small force, and the load sharing ratio of the two ranges between 0.1 and 0.7; with the progress of the excavation section, the surrounding rock deformation (deformation release rate) increases gradually. When the excavation face is close to the monitoring section, the deformation (deformation release rate) is the most severe. With the increase in the distance between the excavation section and the monitoring section, the deformation (deformation release rate) tends to be flat.


2011 ◽  
Vol 261-263 ◽  
pp. 1554-1558
Author(s):  
Ming Lei Sun ◽  
Hong Jian Li ◽  
Zhi Chun Liu

Gypsum breccia is a kind of soft rock-hard soil, and its component is complex. It has poor cementation, low intensity, strong water reaction, slight expansibility and corrosion. During the tunnel construction of gypsum breccia stratum, the mechanical characteristic of supporting structure is very complex. In order to ensure the safety, reasonability and economy of tunnel support system, it is important to acquire the information on displacement and stress of surrounding rock and support system. Two test sections are selected to monitor. Based on the measured data, the distribution characteristics and the time variation law of different kinds of support in gypsum breccia stratum are studied, including surrounding rock pressure, axial force of rock bolt, support pressure and stress. Such conclusions can be got: When strengthened lining (16# I-steel) of the V-grade surrounding rock used, support system performs well; but the stiffness of primary support is not enough if grillage lining is used. Growth of surrounding pressure is for a long time, which shows that the rock mass has Flow characteristics. Especially the surrounding rock pressure increases continuously. The spatial distribution is random, and the value is large. The stiffness of support system should be strengthened. Most blots at the waist arch are compressive. Bolts at the foot arch and sidewall are under tension. The maximum is nearly 124kN. Contact pressure between primary support and secondary lining at the sidewall is higher than that at arch parts. Steel frame stress comes up to 80% of the maximum within 20 days. Excavation of invert has great influences on stress state of surrounding rock and support system.


2012 ◽  
Vol 446-449 ◽  
pp. 1432-1436
Author(s):  
Suo Wang

In order to predict tunnel surrounding rock pressure, this paper puts forward a series of dynamic numerical simulative model on the tunnel excavation. According to the change of rock damage in the construction program, it adjusts dynamically the mechanical material parameters of surrounding rock. So the model achieves the purpose which is controlling and simulating the process of tunnel progressive damage. In accordance with the numerical simulative results, it analyzes the relationship between the rock parameters with the plastic strain, radial displacement. Then this paper proposes a prediction method of tunnel surrounding rock pressure based on the theory of the progressive damage and method of characteristic curve. Finally, it compares the pressure on the numerical simulative models with on the site date, and it proves that the prediction method has practical engineering value.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Wang ◽  
Yiyuan Liu ◽  
Xianghui Deng ◽  
Yu Zhang ◽  
Xiaodong Huang ◽  
...  

With the rapid development of tunnel construction in China, deep buried and long tunnel projects are emerging in areas with complex engineering geological conditions and harsh environment, and thus large deformation of tunnels under conditions of high in situ stress and soft rock becomes increasingly prominent and endangers engineering safety. Therefore, it is of great significance to control the deformation and improve the stability of surrounding rock by analyzing the thickness and distribution law of loose circle according to the unique mechanical properties and failure mechanism of surrounding rock of large deformation soft-rock tunnel. Based on unified strength theory, this paper deduces the radius calculation formula of the loose circle by considering the influence of intermediate principal stress. Furthermore, the theoretical calculations and field tests of the loose circle in the typical sections of grade II and III deformation of Yuntunbao tunnel are carried out, and the thickness and distribution law of loose circle of surrounding rock of large deformation soft-rock tunnel is revealed. The results show that the formula based on the unified strength criterion is applicable for a large deformation tunnel in soft rock.


2013 ◽  
Vol 438-439 ◽  
pp. 949-953
Author(s):  
Hao Bo Fan ◽  
Jin Xing Lai ◽  
Dan Dan Hou

This paper based on Chaoyang tunnel by bench method excavation, using the finite element numerical simulation method, simulates the surrounding rock displacement of soft rock tunnel and the stress characteristics of supporting structure to get the various stages of tunnel surrounding rock stress, strain and the internal force changes of tunnel supporting structure. After the analyses of the numerical simulation results and field monitoring measurement data, the safety and rationality of the method are determined. The research provides certain reference for highway tunnel design and construction.


Sign in / Sign up

Export Citation Format

Share Document