scholarly journals Extractable aluminium, iron and manganese in mineral soils: III Comparison of extraction methods

1989 ◽  
Vol 61 (2) ◽  
pp. 89-97
Author(s):  
Raina Niskanen

The extractability of soil Al, Fe and Mn were studied in 102 mineral soil samples. The extractants were 0.05 M oxalate (pH 2.9), 0.05 M K4P2O7 (pH 10), 0.02 M EDTA (pH 5.3) and 1 M CH3COONH4 (pH 4.8). In the group of clay and silt soils (n = 51), the Al extracted by the four extractants correlated closely; the r values ranged from 0.91*** to 0.96***; in coarser soils (n = 51) the r values ranged from 0.42* to 0.82***. In clay and silt soils, the organic carbon content and soil pH together explained 50 % of the variation in oxalate-extractable Al, 70 % of the variation in pyrophosphate-extractable Al, 53 % of the variation in pyrophosphate-extractable Fe and 56 % of the variation in acetate-extractable Al. The clay and organic carbon contents together with soil pH explained 77 % of the variation in EDTA-extractable Al in clay and silt soils. In coarse soils, the extractable metals were not closely related to the soil characteristics.

2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


2016 ◽  
Vol 2 (1) ◽  
pp. 10 ◽  
Author(s):  
B.H. Prasetyo ◽  
S. Suping ◽  
Subagyo H. ◽  
Mujiono Mujiono ◽  
H. Suhardjo

Tidal flats in the Musi Banyuasin region that cover more than 200,000 ha are the largest area for agricultural development in South Sumatra Province. Only about a half of this has been used for tidal swamp rice fields, therefore, the other half needs to be developed. To obtain a better understanding of their properties for appropriate soil management, soil characteristics of the area need to be studied. To characterize the soil, thirty-four soil samples from seven soil profiles were analyzed for their chemical and mineralogical composition at the laboratories of the Center for Soil and Agroclimate Research and Development. The results indicate that soils from the tidal flat areas have an aquic soil moisture regime, the upper parts of the soils are mostly ripe, and most of the pedons show the presence of sulfidic materials below 65 cm of the mineral soil surface. The soils are classified as Sulfic Endoaquept (P1, P2), Histic Sulfaquent (P3), Typic Sulfaquept (P4), Fluvaquentic Endoaquept (P5), and Sulfic Hydraquent (P6, P7). Mineral composition of the sand fraction is dominated by quartz, while the clay minerals consist of predominantly kaolinite, mixed with small amount of smectite, illite, quartz, and crystoballite. Organic carbon content is high to very high, potential phosphate content of most pedons ranges from very low to medium, while potential potassium content varies from very low to medium in the upper layers and medium to very high in the bottom layers. Phosphate retention of topsoil sample varies from 56 to 97%, and is positively correlated (r2 = 0.73) with aluminum from amorphous materials. Exchangeable cations are dominated by Mg cation, and in all pedons cation exchange capacity values are medium to very high, and seem to be influenced by organic carbon. Specific chemical properties, particularly soil pH and content of exchangeable aluminum exhibit a significant change about 1-2 months after soil samples were taken from the field. Theoretically, interaction between good water management and fertilizer application are among the choices of management to make these soils productive.


2013 ◽  
Vol 664 ◽  
pp. 142-145
Author(s):  
Shan Shan Zhang ◽  
Li Yuan Yang ◽  
Hui Wang ◽  
Qing Lin Chen ◽  
Qian Li

In order to explore the variations and impact factors of soil nitrogen contents, 0-20 cm mineral soil under herb, shrub, Platycladus orientalis plantation of limestone mountains after restoration for 5 years and 10 years were collected and examined in Jinan, Shandong province. The results showed that there was different soil mineral nitrogen content under different vegetation during the natural succession and artificial restoration succession. Shrub community (14.35 mg/Kg) > herb community (12.73 mg/Kg); Platycladus orientalis plantation restored for 10 years (27.82 mg/Kg) > Platycladus orientalis plantation restored for 5 years (20.76 mg/Kg). NO3--N has highly significant positive correlations with soil organic carbon and total nitrogen content (r = 0.626, 0.564, p 4+-N has not significantly correlated with total nitrogen and organic carbon content (r = 0.218, 0.155). However, it has highly significant positive correlation with the NO3--N (r = 0.531, p 3--N and NH4+-N have highly significant negative correlations with soil pH (r = -0.657, -0.605, p < 0.01), respectively. But the correlation with the soil moisture was not significant (r = -0.181, 0.114). The research provided base information for the evaluation of restoration effects and restoration practice on the limestone mountains.


2010 ◽  
Vol 67 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Adriel Ferreira da Fonseca ◽  
Eduardo Fávero Caires ◽  
Gabriel Barth

Micronutrient availability can be affected by the increase of the soil pH due to surface liming. A field trial was carried out on a loamy, kaolinitic, thermic Typic Hapludox at Ponta Grossa, Paraná State, Brazil. The main objective was to evaluate the effects of surface liming and re-liming on the availability of micronutrients [copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)] for wheat (Triticum aestivum L.) cropped under a no-till system. A randomized complete block design was used in a split-plot arrangement. The main plots received surface lime applications (2, 4, and 6 Mg ha-1) in July 1993. In the subplots, surface lime (3 Mg ha-1) was applied again in June 2000. In 2003, before the wheat sowing, soil samples were taken at 0-5, 5-10, and 10-20 cm layers. Soil cationic micronutrients concentrations using different extractants (DTPA-TEA, Mehlich-1, HCl, and Mehlich-3) and solution/soil ratios were determined. Application of lime increased soil pH at 0-5, 5-10, and 10-20 cm. The increase in soil pH by liming did not affect soil organic carbon content. The Mehlich-3 solution had a greater capacity in extracting soil micronutrients. Increasing solution/soil ratio of the DTPA-TEA, Mehlich-1, and HCl solutions generally increased the extraction of Cu, Fe, Mn, and Zn. Liming and re-liming caused a decrease in Mn concentration in the wheat leaves. Leaf concentrations of Cu, Fe and Zn were not affected by liming treatments. The solutions of DTPA-TEA, Mehlich-1, HCl, and Mehlich-3 were ineffective to predict the soil cationic micronutrients availability for a wheat crop after surface application of lime.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8175 ◽  
Author(s):  
Aleksandra Bielecka ◽  
Elżbieta Królak

Solidago canadensis L. is a drought-tolerant, invasive plant, characterized by a large biomass of underground and aboveground parts. The aim of this study was to assess the accumulation of manganese (Mn) and copper (Cu) in the roots and rhizomes and the stems, leaves, and inflorescence parts in S. canadensis from two locations that differed in soil pH, organic carbon, and Mn and Cu concentrations. The concentration of the metals in the samples was determined by the AAS method; the pH was determined by the potentiometric method; and the content of organic carbon was determined using Tiurin’s method. The concentration of Mn and Cu in the roots of S. candensis correlated with the concentrations of the metals in the soil without regard to the soil condition or its organic carbon content. With a low soil pH and organic carbon content, Mn accumulation per 1 ramet in the aboveground parts of S. canadensis consisted over 50% of the total Mn content in the plant. In neutral or alkaline soils, the amount of Mn per 1 ramet accumulated in underground parts was over 60%. Regardless of the soil conditions, about 35% of Mn accumulated in rhizomes. Approximately 60% of copper accumulated in the underground parts of S. candensis (45% in rhizomes) without regard to the soil reaction or organic carbon content. The ability of the plant to accumulate large amounts of metals disposes Solidago canadensis as a candidate for the phytoremediation of soils contaminated with heavy metals.


2019 ◽  
Vol 24 (1) ◽  
pp. 25
Author(s):  
Oyeyiola Yetunde Bunmi ◽  
Omueti John Ajayi

Chemical fertilizers (CF) are the major input on arable farms in Nigeria. Current increasing rate of nutrient depletion in CF treated soils calls for the need to study their reactions in soils. To achieve this, three CF based treatments, namely NPK 15:15:15 applied at 40 kg P2O5 ha-1, Urea applied at 20 kg N ha-1  mixed with Single superphosphate at 40 kg P2O5 ha-1, and single superphosphate at 40 kg P2O5 ha-1  mixed with Gliricidia sepium leaves at 20 kg N ha-1  were studied. Sole lime (CaCO3) at 1 Mg ha-1 and a plot that received no amendment were compared. Cowpea was grown for two consecutive cropping seasons in 2012 and 2013 on the treated fields. The results indicated that CF reduced soil pH from initial 4.8 to 4.0. The NPK 15:15:15 fertilizer was the most severe of the CF tested, removing up to 133% alkalinity from the soil relative to lime. The NPK 15:15:15 reduced calcium saturation (from 25% to 21%) and magnesium saturation (from 12% to 8.3%) and increased acidity saturation (from 53% to 66%) with significant reductions in organic carbon content (from 13.2 g kg-1 to 11.0 g kg-1). Precaution including co-application of CF with organic materials such as Gliricidia sepium leaves can benefit for the soils.


1987 ◽  
Vol 59 (2) ◽  
pp. 63-65
Author(s):  
Raina Niskanen ◽  
Väinö Mäntylahti

Drying of three mineral soil samples (clay content 4—58 %, organic carbon content 1—5 %) equilibrated at 75.5 % relative humidity was studied. The soils were dried in an oven at +50°C, +70°C and + 105°C for 4 and 8 hours and in a desiccator over pure concentrated H2SO4 and P2O5. Drying over desiccants for 8 hours removed less water than drying at + 50°C. Drying over desiccants for 3—7 days was as efficient as drying at +70°C, for 14—24 days as efficient as 4 hours of drying at + 105°C. Eight hours of drying at + 105°C seemed to be too drastic, because it caused a greater weight loss in the clay sample of 5 % organic carbon content than did prolonged desiccant-drying. Drying at + 70°Cremoved as much water from fine sand which contained 4 % clay as prolonged desiccant-drying.


Sign in / Sign up

Export Citation Format

Share Document