scholarly journals Parabolic tendons in prestressed concrete - how accurate are equivalent loads?

2021 ◽  
Vol 54 (3) ◽  
pp. 117-129
Author(s):  
Matti Pajari

The mechanical effects of a parabolic tendon can be modeled replacing the tendon by external loads applied to the concrete. The intensity of these loads depends on the prestressing force P and curvature of the tendons. These two factors are also interrelated because the losses of prestress vary with the curvature. The structural analysis can be simplified by approximating that the line load against the tendon, able to maintain the initial parabolic form of the tendon and called equivalent load, is constant, perpendicular to the centroidal axis of the beam and equal to P/R where R is the radius of curvature of the parabola at its vertex. This approximation is one of the key issues in the textbooks but normally not properly justified. In this paper, the mathematical background for the approximation is formulated. Some typical tendon layouts are analyzed to evaluate the approximation error. The error proved to be insignificant for simple beams. For cantilever and continuous beams more accurate methods in the final design are recommended.

2021 ◽  
Vol 11 (1) ◽  
pp. 359
Author(s):  
Sung Tae Kim ◽  
Hyejin Yoon ◽  
Young-Hwan Park ◽  
Seung-Seop Jin ◽  
Soobong Shin ◽  
...  

This paper presents a multi-functional strand capable of introducing prestressing force in prestressed concrete (PSC) girders and sensing their static and dynamic behavior as well. This innovative strand is developed by replacing the core steel wire of the strand used in PSC structures with a carbon fiber-reinforced polymer (CFRP) wire with a built-in optical Fiber Bragg Grating (FBG) sensor. A full-scale girder specimen was fabricated by applying this multi-function strand to check the possibility of tracking the change of prestressing force at each construction stage. Moreover, dynamic data could be secured during dynamic loading tests without installing accelerometers and made it possible to obtain the natural frequencies of the structure. The results verified the capability to effectively manage the prestressing force in the PSC bridge structure by applying the PC strand with a built-in optical sensor known for its outstanding practicability and durability.


2020 ◽  
Vol 10 (12) ◽  
pp. 4084 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Sung Yong Park ◽  
Se-Jin Jeon

The proper distribution of prestressing force (PF) is the basis for the design of prestressed concrete (PSC) structures. However, the PF distribution obtained by predictive equations of prestress losses has not been sufficiently validated by comparison with measured data due to the poor reliability and durability of conventional sensing technologies. Therefore, the Smart Strand with embedded fiber optic sensors was developed and applied to PSC structures to investigate the long-term characteristics of PF distribution as affected by concrete creep and shrinkage. The data measured in a 20 m-long full-scale specimen and a 60 m-long PSC girder bridge were analyzed by comparing them with the theoretical estimation obtained from several design equations. Although the long-term decreasing trend of the PF distribution was similar in the measurement and theory, the equation of Eurocode 2 for estimating the long-term prestress losses showed better agreement with the measurement than ACI 209R and ACI 423.10R did. This can be attributed to the more refined form of the predictive equation of Eurocode 2 in dealing with the time-dependency of the PF. The study results also confirmed the need to compensate for the temperature variation in the long-term monitoring to derive the actual mechanical strain related to the PF. We expect our developed Smart Strand to be applied practically in PF measurement for the reasonable safety assessment and maintenance of PSC structures by improving several of the existing drawbacks of conventional sensors.


1985 ◽  
Vol 12 (1) ◽  
pp. 213-225 ◽  
Author(s):  
Sami M. Fereig

The design of prestressed concrete bridges using standard CPCI (Canadian Prestressed Concrete Institute) girders is generally done by trial and error, requiring extensive computation. This study will use a linear programming mathematical model to establish preliminary design charts for such cases and to obtain the required prestressing force after losses for a given CPCI bridge interior girder with different spans and spacings. The bridge is designed to carry the MS200-77 loading, and the design conforms with the Canadian Standards Association CAN3-S6-M79 for design of highway bridges. The bridge considered is single-span, with a cast in situ concrete deck acting compositely with the prestressed girders under live load. The linear programming model is also used to determine the design criteria that will control the design for the cases investigated, and to perform the parametric study to evaluate the effect of variations in deck thickness, girder concrete strength, and prestressing losses on the value of the required prestressing force. Key words: bending moment, concrete, girders, highway bridges, linear programming, load, prestressing, span.


1993 ◽  
Vol 20 (6) ◽  
pp. 969-979
Author(s):  
J. L. Dawe ◽  
G. G. Aridru

Two series of post-tensioned concrete masonry walls subjected to uniform lateral loading were tested to investigate their flexural strength behaviour. Each series of walls consisted of four full-scale prestressed specimens, with varying levels of prestressing force, and one reinforced specimen. Of particular interest were the load–deflection curves, initial cracking loads, wall stiffness, crack patterns, and ultimate failure loads. An air bag test apparatus was used for applying lateral uniform pressures to the specimens. Results of this experimental investigation showed that, for a given wall thickness, increased prestressing force increases the cracking load, initial wall stiffness, and ultimate failure load. The results have established a linear relationship between increased prestressing force and initial cracking load, initial wall stiffness, and ultimate failure load. The proposed model, which takes into account changes in wall stiffness after initial cracking of the wall, accurately predicts wall behaviour. Key words: masonry, prestressed, walls, strength, behaviour, uniform, pressure, experimental, analytical.


Author(s):  
N. D. Catella ◽  
R. A. Mayville

Prestressed concrete crossties are used extensively by North American railroads because they offer improved service life and consistent performance. Recent industry trends have encouraged manufacturers to effectively increase concrete ties’ prestressing force to improve their structural performance in flexure and shear. This paper presents the results of linear and nonlinear three-dimensional finite element analyses of typical concrete crossties to study the stress state of crossties at prestress transfer and to identify potential negative consequences of increasing effective prestressing force. The analyses utilize finite-sliding contact with Coulomb friction to model interaction between prestressing strands and adjacent concrete. Variation of several parameters that affect stress state at prestress transfer are considered, including magnitude of prestressing force, stiffness of concrete, crosstie geometry, and strand configuration. The analyses indicate that tensile stresses develop near the ends of the crossties at prestress transfer and their magnitudes increase with decreasing transfer length and increasing prestress force. These tensile stresses may account for widespread longitudinal cracking that has been observed in premature failure of concrete crossties in the last ten years.


2013 ◽  
Vol 671-674 ◽  
pp. 952-956 ◽  
Author(s):  
Yi Qiang Xiang ◽  
Li Chang Zhang ◽  
Qiang Qiang Wu

The prestressed concrete deck-tied arch bridge doesn’t only have a long span, good appearance and economy, but also have the characteristics of low requirements to the foundation. It changes traditional tied arch bridge into deck-tied arch bridge, which looks like sunflower-shaped arch and prestressed steel strands are embedded in box girder on the top of the arch. Taking Yingbin Bridge as engineering background, the reasonable analysis model was established and behaviour of the bridge under design load was analyzed. The results shown that the design project is reasonable, prestressing force embedded in box girder can balance horizontal thrust in arch bridge effectively, improving the internal force of the main arch ring.


2009 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Eltayeb Hassan Onsa ◽  
Elsafi Mohamed Adam ◽  
Abdalla Khogali Ahmed ◽  
Mohamed Elmontasir Elbagir

Long-term deflections in balanced cantilever prestressed concrete bridges are reviewed. Burri and Shambat Bridges are taken as cases study to calculate long-term deflection. The two bridges were constructed at Khartoum State in the years 1972 and 1962, respectively. Due to the shortage of the basic data regarding the two bridges the AASHTO-LRFD is used to estimate and calculate the missing data in the two bridges. The Moment Area method is used to calculate the long-term deflections due to the dead load, live load and prestressing force. The calculated long-term deflections are compared with measured live load deflections obtained from load tests made by a Chinese contractor requested to evaluate the two bridges. Remarkable differences between theoretical and measured deflection at the end of cantilevers are encountered. The differences are probably due to the basic assumptions made in the formulations of deflection calculations. Some adjustments in the long-term deflection formulae are suggested to bring the calculated deflections in compatibility with measured ones.


2021 ◽  
Vol 27 (8) ◽  
pp. 637-650
Author(s):  
M. Obaydullah ◽  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
Md. Humayun Kabir ◽  
Muhammad Harunur Rashid

In this study, a combined strengthening technique is used to improve the flexural performance of prestressed concrete beams using CFRP sheets as EBR and prestressed steel strands as NSM. Seven prestressed beams were tested under four-point loading with one control specimen, one EBR CFRP sheet strengthened specimen, one NSM steel strand without prestress strengthened specimen and four specimens strengthened with a combination of EBR CFRP sheet and NSM steel strands prestressed from 0% to 70% of their tensile strength. The flexural responses and failure modes of the specimens were investigated and the variations due to the level of prestressing force in the PNSM steel strands were also assessed. A finite element model (FEM) was developed using ABAQUS to verify the flexural responses of the strengthened specimens. The test results revealed that the combined strengthening technique remarkably enhanced the flexural performance of the specimens. The serviceability, first crack, yield, and ultimate load capacities improved up to 44%, 49%, 55% and 70%, respectively when compared with the control specimen. The combined technique also ensured the flexural failure of the specimens with significant enhancement in stiffness and energy absorption. The results of the FEM model exhibited excellent agreement with the experimental results.


Author(s):  
Sang-Hyun Kim ◽  
Sung Yong Park ◽  
Sung Tae Kim ◽  
Se-Jin Jeon

AbstractThe proper estimation of prestressing force (PF) distribution is critical to ensure the safety and serviceability of prestressed concrete (PSC) structures. Although the PF distribution can be theoretically calculated based on certain predictive equations, the resulting accuracy of the theoretical PF needs to be further validated by comparison with reliable test data. Therefore, a Smart Strand with fiber optic sensors embedded in a core wire was developed and applied to a full-scale specimen and two long-span PSC girder bridges in this study. The variation in PF distribution during tensioning and anchoring was measured using the Smart Strand and was analyzed by comparison with the theoretical distribution calculated using the predictive equations for short-term prestress losses. In particular, the provisions for anchorage seating loss and elastic shortening loss were reviewed and possible improvements were proposed. A new method to estimate the amount of anchorage slip based on real PF distributions revealed that the general assumption of 3–6-mm slip falls within a reasonable range. Finally, the sensitivity of the PF distribution to a few of the variables included in the equation of the elastic shortening loss was examined. The study results confirmed that the developed Smart Strand can be used to improve the design parameters or equations in PSC structures by overcoming the drawbacks of conventional sensing technologies.


1987 ◽  
Vol 33 (115) ◽  
pp. 281-292 ◽  
Author(s):  
Keith Echelmeyer ◽  
Kamb Barclay

AbstractThe flow of a glacier along a channel of constant longitudinal curvature is analyzed using analytical and finite-element methods. Channels of various cross–sectional shape are investigated, ranging from a simple rectangular form with zero shear traction along the bed to realistic profiles taken from Blue Glacier, Washington. Terms in the equilibrium and rate-of-deformation equations which are inversely dependent on radius and a body force which varies transversely across the glacier introduce several characteristic features into the stress and velocity fields of the curving glacier. The stress center line is shifted toward the inside of the bend, causing an asymmetric crevasse pattern and non‒zero stress magnitude at the surface on the geometric center line of the channel. The stress field is dependent on the stress exponent in the flow law and is non-linear across the surface. The surface–velocity pattern shows a “tilting” of the usual high‒order parabolic form, being skewed toward the inside of the bend. There is a shift in the velocity maximum from the deepest part of the channel. All of these curvature‒induced features are dependent on the radius of curvature, actual channel geometry, and stress exponent in the flow law. Model results show excellent agreement with the velocity and crevasse patterns on the curving Blue Glacier.


Sign in / Sign up

Export Citation Format

Share Document