Destruction of Parts and Structures of Oil and Gas Equipment of the Wells in Hydrogen Sulfide-Containing Media

Author(s):  
R.F. Mambetov ◽  
◽  
V.M. Kushnarenko ◽  
E.V. Ganin ◽  
◽  
...  
Keyword(s):  
Author(s):  
А.В. Селюков

Сообщается о новой комплексной технологии кондиционирования холодных маломинерализованных подземных вод. Технология разрабатывалась для целей хозяйственно-питьевого водоснабжения нефтегазоносных районов Тюменского Севера. При благополучном соотношении ресурсов пресной воды и фактического объема водопотребления в этом регионе России вопрос питьевого водоснабжения из подземных горизонтов остается острым из-за проблемного качества воды и низкой эффективности очистных сооружений. Технология предназначена для очистки от железа, марганца, сероводорода и обеспечивает стабилизационную обработку воды. Основные работы, включавшие лабораторные исследования и пилотные испытания, выполнены в период 2001–2020 годов. На основе разработанных технологических решений построены и успешно эксплуатируются водопроводные очистные сооружения в городах Ноябрьске (75 тыс. м3/сут, 2006 г.) и Новом Уренгое (65 тыс. м3/сут, 2007 г.). Дополнительные испытания технологии, проведенные в Ханты-Мансийске и Комсомольске-на-Амуре, подтвердили ее эффективность. Технология предусматривает применение в качестве основных реагентов пероксида водорода и перманганата калия для окисления примесей воды, а также щелочного реагента для корректировки рН и стабилизационной обработки. Для обеспечения требований стандарта ВОЗ по содержанию железа и марганца дополнительно может использоваться флокулянт. Обобщены данные по составу подземных вод, использованных для испытаний, и на их основе определена рекомендуемая область применения разработанной технологии. Приведена принципиальная технологическая схема кондиционирования холодных маломинерализованных подземных вод, учитывающая 15-летний опыт эксплуатации построенных станций, а также современные решения по дозированию и смешению реагентов. Указано, что данная технология обеспечивает также частичное снижение содержания кремния в очищенной воде (до 30%). Разработанная технология позволяет получать стабильную питьевую воду при нормативном остаточном содержании железа, марганца и сероводорода. An advanced integrated technology for conditioning low-mineralized cold groundwater is presented. The technology was developed for the purpose of supplying drinking water to the oil and gas-bearing regions of the Tyumen North. With a favorable ratio of fresh water resources and the actual volume of water consumption in this region of Russia, the issue of drinking water supply from underground aquifers remains acute due to the problematic water quality and low efficiency of the treatment facilities. The technology is intended for removing iron, manganese, hydrogen sulfide and providing for the stabilization treatment of water. The main work including laboratory studies and pilot tests was carried out in the period 2001–2020. On the basis of the developed process solutions, water treatment facilities have been built and successfully operated in the cities of Noyabrsk (75 thousand m3/day, 2006) and Novy Urengoy (65 thousand m3/day, 2007). Additional tests of the technology carried out in Khanty-Mansiisk and Komsomolsk-on-Amur confirmed its effectiveness. The technology involves using hydrogen peroxide and potassium permanganate as the basic chemicals for the oxidation of water pollutants, as well as using an alkaline chemical for pH adjustment and stabilization treatment. To meet the requirements of the WHO standard for the concentrations of iron and manganese, an additional flocculant can be used. The data on the composition of groundwater used for testing are summarized, and on their basis the recommended area of ​​application of the developed technology is determined. The basic process flow scheme of conditioning low-mineralized cold groundwater in view of 15 years of experience in operating the existing facilities, and of advanced solutions for dosing and mixing of chemicals, is presented. It is indicated that the technology also provides for a partial reduction in the silicon concentration in purified water (up to 30%). The developed technology ensures stable drinking water with a standard residual concentration of iron, manganese and hydrogen sulfide.


2020 ◽  
Vol 2 (1) ◽  
pp. 27
Author(s):  
Amvrosios G. Georgiadis ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

The removal of hydrogen sulfide (H2S) from gas streams with varying overall pressure and H2S concentrations is a long-standing challenge faced by the oil and gas industries. The present work focuses on H2S capture using metal–organic frameworks (MOFs), in an effort to shed light on their potential as adsorbents in the field of gas storage and separation. MOFs hold great promise as they make possible the design of structures from organic and inorganic units, but also, they have provided an answer to a long-time challenging issue, i.e., how to design extended structures of materials. Moreover, the functionalization of the MOF’s surface can result in increased H2S uptake. For example, the insertion of 1% of a fluorinated linker in MIL-101(Cr)-4F(1%) allows for enhanced H2S capture. Although noticeable efforts have been made in studying the adsorption capacity of H2S using MOFs, there is a clear need for gaining a deeper understanding in terms of their thermal conductivities and specific heats in order to design more stable adsorption beds, experiencing high exothermicity. Simply put, the exothermic nature of adsorption means that sharp rises in temperature can negatively affect the bed stability in the absence of sufficient heat transfer. The work presented herein provides a detailed discussion by thoroughly combining the existing literature on new developments in MOFs for H2S removal, and tries to provide insight into new areas for further research.


Author(s):  
Н.Д. Айсунгуров ◽  
П.С. Цамаева ◽  
А.А. Эльмурзаев ◽  
С.С. Юсупов

Экономической составляющей нашей страны была и остается топливно-энергетическая промышленность, в частности нефтегазовая отрасль промышленности. Снижение объемов добычи жидких углеводородов из-за истощения огромного количества эксплуатируемых скважин заставляет искать пути решения возникающих проблем. Одним из решений такого рода проблем видится увеличение числа эксплуатации нефтегазовых скважин, которые сталкиваются с проблемами из-за высокого содержания в составе вредных компонентов, в частности сероводорода. Ведущие нефтяные компании имеют свое видение решения этих проблем. Исследования ученых в этой области предлагают свои решения подобного рода вопросов. Одним из таких предложений является разработка технологии утилизации сероводорода путем окисления газов кислородом воздуха на твердых катализаторах. В статье предлагается метод выделения серы из высококонцентрированного сероводородсодержащего газа в кипящем слое катализатора. Авторами проведены испытания предлагаемого метода на опытной установке и даны рекомендации по проведению такого рода исследований. The economic component of our country has been and remains the fuel and energy industry, in particular the oil and gas industry. The decline in liquid hydrocarbon production, due to the depletion of a huge number of exploited wells, makes us look for ways to solve the problems that arise. One of the solutions to this kind of problems seems to be an increase in the number of oil and gas wells that encounter problems due to the high content of harmful components, in particular hydrogen sulfide. Leading oil campaigns have their own vision for solving these problems. Researches of scientists in this area offer their solutions to this kind of issues. One of such proposals is the development of technology for the utilization of hydrogen sulfide by oxidizing gases with atmospheric oxygen on solid catalysts. The article proposes a method for the separation of sulfur from highly concentrated hydrogen sulfide-containing gas in a fluidized bed of catalyst. The authors tested the proposed method in a pilot plant and made recommendations for conducting this kind of research.


2020 ◽  
Vol 2020 (3) ◽  
pp. 70-81
Author(s):  
M Juraev ◽  
◽  
G Bimurzaev ◽  
B Razykov ◽  
B Khaidarov

The lithological-facies factor is considered with the aim of studying the natural and geological conditions in which hydrogen sulfide waters are formed in gas and oil fields in the artesian basins of the Republic of Uzbekistan. The distribution of hydrogen sulfide waters is closely related to the areas of joint development of halogen rocks and oil and gas complexes. Since the term “paragenesis” refers to the joint finding of minerals or chemical elements genetically related, this map is a map of the paragenesis of hydrogen sulfide waters with evaporites and oil and gas complexes. In the absence of one of the necessary conditions (sulfates or petroleum organics), hydrogen sulfide waters of high concentration are not formed. Hydrogen sulfide waters in the identified anticlinal structures are formed due to the presence of insignificant gas and oil deposits, which are not of industrial importance


Safety ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Kayode I. Adeniyi ◽  
Herman H. Wan ◽  
Connor E. Deering ◽  
Francis Bernard ◽  
Molly A. Chisholm ◽  
...  

Hydrogen sulfide (H2S) is a hazardous, colorless, flammable gas with a distinct rotten-egg smell at low concentration. Exposure to a concentration greater than 500 ppm of H2S can result in irreversible health problems and death within minutes. Because of these hazards, operations such as oil and gas processing and sewage treatment that handle or produce H2S and/or sour gas require effective and well-designed hazard controls, as well as state-of-the-art gas monitoring/detection mechanisms for the safety of workers and the public. Laboratories studying H2S for improved understanding must also develop and continually improve upon lab-specific safety standards with unique detection systems. In this study, we discuss various H2S detection methods and hazard control strategies. Also, we share our experience regarding a leak that occurred as a result of the failure of a perfluoroelastomer O-ring seal on a small stirred autoclave vessel used for studying H2S hydrate dissociation/formation conditions in our laboratory, and discuss how our emergency response plan was activated to mitigate the risk of exposure to the researchers and public.


Sign in / Sign up

Export Citation Format

Share Document