Effects of Inclination angle and Free Convection on Velocity Profile for a Steady 2-Dimensional Magnetohydrodynamic Fluid Flow in an Inclined Cylindrical Pipe

2021 ◽  
Vol 6 (7) ◽  
pp. 114-117
Author(s):  
B. Odongo ◽  
R. Opiyo ◽  
A. Manyonge

Effects of inclination and free convection on velocity profile for magnetohydrodynamic (MHD) fluid flow in an inclined cylindrical pipe has been investigated. The governing partial differential equations are the equations of continuity, momentum and energy which are converted into ordinary differential equation by employing similarity transformation and solved numerically by the Runge- Kutta fourth order scheme with shooting method. The findings, which are presented in the form of tables and graphs reveal that; when Hartmann number, Grashoff number and Gamma are decreased, the velocity of the fluid increases. The results of the study may be useful for the different model investigations, especially, in various areas of science and technology in which optimal inclination and free convection are utilized.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jawad Raza ◽  
Azizah Mohd Rohni ◽  
Zurni Omar

A numerical investigation is made to determine the occurrence of the multiple solutions of MHD Casson fluid in a porous channel. Governing partial differential equation of the proposed problem converted into nonlinear ordinary differential equations by using similarity transformation. Numerical technique known as shooting method is used to investigate the existence of the multiple solutions for the variations of different parameters. Effects of physical parameters on velocity profile, temperature, concentration, and skin friction are presented in pictorial and tabulation representation.


2018 ◽  
Vol 388 ◽  
pp. 344-349
Author(s):  
D.V. Jayalakshmamma ◽  
P.A. Dinesh ◽  
D.V. Chandrashekhar

The numerical study of axi-symmetric, steady flow of an incompressible micropolar fluid past an impervious sphere is presented by assuming uniform flow far away from the sphere. The continuity, linear and angular momentum equations are considered for incompressible micropolar fluid in accordance with Eringen. The governing equations of the physical problem are transformed to ordinary differential equation with variable co-efficient by using similarity transformation method. The obtained differential equation is then solved numerically by assuming the shooting technique. The effect of coupling and coupling stress parameter on the properties of the fluid flow is studied and demonstrated by graphs.


1973 ◽  
Vol 28 (10) ◽  
pp. 1591-1602
Author(s):  
H. E. Wilhelm

A similarity transformation is given, which reduces the partial, nonlinear differential equations describing a compressible, polytropic plasma flow across an azimuthal magnetic field in a duct with plane inclined walls to an ordinary nonlinear differential equation of second order. The latter is solved rigorously in terms of a hyperelliptic integral. The form of the plasma flow fields in pure outflows (diffuser) is discussed analytically in dependence of the Reynolds (R) and Hartmann (H) numbers and the polytropic coefficient (γ) for given duct angles θ0 . The realizable Mach numbers are shown to be eigenvalues of the nonlinear boundary-value problem, M=MX{R, H, γ, θ0). The flow solutions are different in type for Hartmann numbers H 1) below and 2) above a critical Hartmann number Hc defined by Hc2= [2(γ - 1)/(γ +1)]R+ [2 γ/(γ +1)]2. Some of the eigenvalues Mx are calculated and the associated velocity profiles are represented graphically for prescribed flow parameters.


2010 ◽  
Vol 13 (11) ◽  
pp. 1033-1037
Author(s):  
Muhammad R. Mohyuddin ◽  
S. Islam ◽  
A. Hussain ◽  
A. M. Siddiqui

2020 ◽  
Vol 9 (1) ◽  
pp. 338-351
Author(s):  
Usha Shankar ◽  
N. B. Naduvinamani ◽  
Hussain Basha

AbstractA two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with variable thermal conductivity and exterior squeezing with viscous dissipation effect is investigated, numerically. Present flow model is developed based on the considered flow geometry. Effect of Lorentz forces on flow behaviour is described in terms of magnetic field and which is accounted in momentum equation. Influence of variable thermal conductivity on heat transfer is considered in the energy equation. Present investigated problem gives the highly complicated nonlinear, unsteady governing flow equations and which are coupled in nature. Owing to the failure of analytical/direct techniques, the considered physical problem is solved by using Runge-Kutta scheme (RK-4) via similarity transformations approach. Graphs and tables are presented to describe the physical behaviour of various control parameters on flow phenomenon. Temperature boundary layer thickens for the amplifying value of Weissenberg parameter and permeable velocity parameter. Velocity profile decreased for the increasing squeezed flow index and permeable velocity parameter. Increasing magnetic number increases the velocity profile. Magnifying squeezed flow index magnifies the magnitude of Nusselt number. Also, RK-4 efficiently solves the highly complicated nonlinear complex equations that are arising in the fluid flow problems. The present results in this article are significantly matching with the published results in the literature.


2017 ◽  
Vol 34 (5) ◽  
pp. 667-678 ◽  
Author(s):  
H. Nowruzi ◽  
H. Ghassemi

AbstractNano-nozzles are an essential part of the nano electromechanical systems (NEMS). Cross-sectional geometry of nano-nozzles has a significant role on the fluid flow inside them. So, main purpose of the present study is related to the effects of different symmetrical cross-sections on the fluid flow behavior inside of nano-nozzles. To this accomplishment, five different cross-sectional geometries (equilateral triangle, square, regular hexagon, elliptical and circular) are investigated by using molecular dynamics (MD) simulation. In addition, TIP4P is used for atomistic water model. In order to evaluate the fluid flow behavior, non-dimensional physical parameters such as Fanning friction factor, velocity profile and density number are analyzed. Obtained results are shown that the flow behavior characteristics appreciably depend on the geometry of nano-nozzle's cross-section. Velocity profile and density number for five different cross sections of nano-nozzle at three various measurement gauges are presented and discussed.


2018 ◽  
Vol 28 (12) ◽  
pp. 2979-2996 ◽  
Author(s):  
A.S. Dogonchi ◽  
Mikhail A. Sheremet ◽  
Ioan Pop ◽  
D.D. Ganji

Purpose The purpose of this study is to investigate free convection of copper-water nanofluid in an upper half of circular horizontal cylinder with a local triangular heater under the effects of uniform magnetic field and cold cylinder shell using control volume finite element method (CVFEM). Design/methodology/approach Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with Brinkman correlation for the effective dynamic viscosity and Hamilton and Crosser model for the effective thermal conductivity have been solved numerically by CVFEM. Findings The impacts of control parameters such as the Rayleigh number, Hartmann number, nanoparticles volume fraction, local triangular heater size, shape factor on streamlines and isotherms as well as local and average Nusselt numbers have been examined. The outcomes indicate that the average Nusselt number is an increasing function of the Rayleigh number, shape factor and nanoparticles volume fraction, while it is a decreasing function of the Hartmann number. Originality/value A complete study of the free convection of copper-water nanofluid in an upper half of circular horizontal cylinder with a local triangular heater under the effects of uniform magnetic field and cold cylinder shell using CVFEM is addressed.


2010 ◽  
Vol 82 (7) ◽  
pp. 2643-2651 ◽  
Author(s):  
Emily C. Anderson ◽  
Melissa C. Weston ◽  
Ingrid Fritsch

Sign in / Sign up

Export Citation Format

Share Document