scholarly journals A Brief Review of Heat Sink, Heat Pipe, and Vapor Chamber as a Key Function of Thermal Solution for Electronic Devices

2020 ◽  
Vol 5 (11) ◽  
pp. 1297-1300
Author(s):  
Mohamed Elnaggar ◽  
Mohammed Abu Hatab ◽  
Ezzaldeen Edwan

Electronics industry requires efficient design that can handle fast mathematical operations to compensate for the growing development and demand for processing power. These days, there are numerous equipment or parts inside machines called heating elements particularly with electrical or electronic devices and they should be cooled during the working process. However, with respect to their size, manufacturers are minifying day by day to satisfy requirements of users but the power should be maintained. Hence, elements withstand a high amount of heat and high heat flux (transition/mutability) is being generated during the working process. The main contribution of this study is to investigate thermal solutions using four cooling tools and to compare to each other and consider thermal design guidelines and factors as well. Furthermore, we review the appropriate thermal solutions for the produced heat from the electronic equipment and we present the effective and suitable tools which used to dissipate this heat. A heat sink, heat pipe, and vapor chamber are reviewed and compared depending on the previous studies that have implemented them.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Craig Green ◽  
Peter Kottke ◽  
Xuefei Han ◽  
Casey Woodrum ◽  
Thomas Sarvey ◽  
...  

Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.


Author(s):  
Matt Connors

Current blade processors need air cooling solutions that dissipate 100–300 watts with heat sinks that are less than 30 mm high. In order to cool these processors, the heat sink base has to grow in length and width to compensate for the lack of available height. As these dimensions grow, decreasing the base spreading of the heat sink becomes an important factor is decreasing the overall resistance of the heat sink. A vapor chamber used as a substitute to common copper or aluminum as the base of the heat sink can increase performance by 20–25%. A vapor chamber is a two phase heat transport system that significantly reduces the spreading resistance in applications where there is a high heat flux processor coupled with a large heat sink. In this paper, a CFD model will be constructed to predict the performance gains realized by using a vapor chamber base in lieu of a copper or aluminum base. These predictions will then be experimentally tested to confirm the modeling parameters and the actual measured thermal performance of the heat sink. By utilizing vapor chambers in heat sink design, thermal engineers will gain valuable heat sink performance within the constraints imposed by the blade system architecture.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Yuxin You ◽  
Beibei Zhang ◽  
Sulian Tao ◽  
Zihui Liang ◽  
Biao Tang ◽  
...  

Heat sinks are widely used in electronic devices with high heat flux. The design and build of microstructures on heat sinks has shown effectiveness in improving heat dissipation efficiency. In this paper, four kinds of treatment methods were used to make different microstructures on heat sink surfaces, and thermal radiation coating also applied onto the heat sink surfaces to improve thermal radiation. The surface roughness, thermal emissivity and heat dissipation performance with and without thermal radiation coating of the heat sinks were studied. The result shows that with an increase of surface roughness, the thermal emissivity can increase up to 2.5 times. With thermal radiation coating on a surface with microstructures, the heat dissipation was further improved because the heat conduction at the coating and heat sink interface was enhanced. Therefore, surface treatment can improve the heat dissipation performance of the heat sink significantly by enhancing the thermal convection, radiation and conduction.


Author(s):  
H. B. Ma ◽  
K. P. Lofgreen ◽  
G. P. Peterson

An experimental investigation on a highly efficient heat pipe heat sink was investigated, in which the interline region was optimized using sintered particles. The effects of condenser size, sintered particles, and forced air flow on the heat transfer performance were investigated experimentally. The experimental results indicated that the thin film evaporation could significantly increase the evaporating heat transfer coefficient and remove heat fluxes up to 800 kW/m2. In addition, a theoretical model capable of predicting the temperature drop occurring in the device was developed. The predicted performance was in good agreement with the experimental data. The resulting model can be used to assist in the design of high heat flux, heat pipe heat sinks for applications to both ground based and spacecraft applications.


Author(s):  
P. Srikrishna ◽  
P.V.Siva Rao ◽  
Arun Kumar Singh ◽  
GSVL Narasimham ◽  
SUM Reddy

2005 ◽  
Vol 128 (1) ◽  
pp. 18-22 ◽  
Author(s):  
H. B. Ma ◽  
K. P. Lofgreen ◽  
G. P. Peterson

An experimental investigation of a highly efficient heat pipe heat sink was investigated, in which the interline region was optimized using sintered particles. The effects of condenser size, sintered particles, and forced air flow on the heat transfer performance were investigated experimentally. The experimental results indicated that the thin film evaporation could significantly increase the evaporating heat transfer coefficient and remove heat fluxes up to 800kW∕m2. In addition, a theoretical model capable of predicting the temperature drop occurring in this device was developed. The predicted performance was in good agreement with the experimental data and the resulting model can be used to assist in the design of high heat flux, heat pipe heat sinks.


2013 ◽  
Vol 455 ◽  
pp. 466-469
Author(s):  
Yun Chuan Wu ◽  
Shang Long Xu ◽  
Chao Wang

With the increase of performance demands, the nonuniformity of on-chip power dissipation becomes greater, causing localized high heat flux hot spots that can degrade the processor performance and reliability. In this paper, a three-dimensional model of the copper microchannel heat sink, with hot spot heating and background heating on the back, was developed and used for numerical simulation to predict the hot spot cooling performance. The hot spot is cooled by localized cross channels. The pressure drop, thermal resistance and effects of hot spot heat flux and fluid flow velocity on the cooling of on-chip hot spots, are investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document