scholarly journals Synthesis and Characterization of the Microstructure and Functional Group Bond of Fe3o4 Nanoparticles from Natural Iron Sand in Tobelo North Halmahera

2018 ◽  
Vol 7 (2) ◽  
pp. 129 ◽  
Author(s):  
Ferni Malega ◽  
I Putu Tedy Indrayana ◽  
Edi Suharyadi

The Fe3O4 nanoparticles have been successfully synthesized from natural iron sand by using co-precipitation method at a temperature of 56oC. The elemental identification, structural characterization, and bonding analysis were carried out using XRF, XRD, and FTIR, respectively. The sample nanoparticles contain elements of Al, P, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Rb, Re, Bi, and Fe. The composition of Fe element is 87.37%. The sample of the nanoparticle exhibited as the Fe3O4 which was shown by the diffraction pattern that belongs to a cubic spinel structure of Fe3O4. The crystallite size of the nanoparticle is 42.25 ± 0.42 nm. The lattice parameter was found at 8.384 ± 0.049 Å. The crystallite density is 5.232103 kg/m3 while the lattice strain is 1.41310-3/line. The FTIR spectra confirm that the existence of Fe-O stretching vibration in the range frequency of 658 cm-1-506 cm-1

2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2017 ◽  
Vol 43 (15) ◽  
pp. 12120-12125 ◽  
Author(s):  
S.A.N.H. Lavasani ◽  
O. Mirzaee ◽  
H. Shokrollahi ◽  
A.K. Moghadam ◽  
M. Salami

2018 ◽  
Vol 33 (4) ◽  
pp. 501-513 ◽  
Author(s):  
Hossein Semyari ◽  
Majid Salehi ◽  
Ferial Taleghani ◽  
Arian Ehterami ◽  
Farshid Bastami ◽  
...  

In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document