scholarly journals Active Layer Dynamics Near Norilsk, Taimyr Peninsula, Russia

2021 ◽  
Vol 14 (4) ◽  
pp. 55-66 ◽  
Author(s):  
Valery I. Grebenets ◽  
Vasily A. Tolmanov ◽  
Dmitry A. Streletskiy

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.

2021 ◽  
Author(s):  
Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

Abstract Alaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to infiltrate soil layers beneath through the harmonic fluctuation of the active layer. Past studies found that warmer air temperature resulted in increasingly deeper thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a study site on the North Slope. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings. It is found that the active layer thickens when the ground surface is either gravel fill or undisturbed tundra, but its thickness varies based on climate model predictions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that strain is most significant in the near-surface layers during thaw, indicating that settlement would be concurrent with annual thaw penetration. From this study, the climate model predicted air temperatures for a warming Arctic suggest that the thaw of near-surface frozen ground is largely dependent on ground surface conditions and the thermal properties of soil. Moreover, ice content is a major factor in the settlement predictions on Alaska’s North Slope. This study's results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.


2020 ◽  
Author(s):  
H. Brendan O'Neill ◽  
Yu Zhang

<p>Ground surface subsidence caused by the melt of excess ice is a key geomorphic process in permafrost regions. Subsidence can damage infrastructure, alter ecology and hydrology, and influence carbon cycling. The Geological Survey of Canada maintains a network of thaw tubes in northwestern Canada, which records annual thaw penetration, active-layer thickness, and ground surface elevation changes at numerous sites. Measurements from the early 1990s from 17 sites in the Mackenzie Delta area have highlighted persistent increases in thaw penetration in response to rising air temperatures. These increases in thaw penetration have been accompanied by significant ground surface subsidence (~5 to 20 cm) at 10 ice rich sites, with a median subsidence rate of 0.4 cm a<sup>-1</sup> (min: 0.2, max: 0.8 cm a<sup>-1</sup>). Here we present preliminary results comparing these long-term field data to simulations for two observation sites using the Northern Ecosystem Soil Temperature (NEST) model. NEST has been modified to include a routine that accounts for ground surface subsidence caused by the melt of excess ground ice. The excess ice content of upper permafrost in the simulations was estimated based on ratios between thaw penetration and subsidence measured at each thaw tube. The NEST simulations begin in 1901, and there is little ground surface subsidence until the 1980s. The simulated rate of ground surface subsidence increases in the 1990s. The modelled ground surface subsidence is in good agreement with the measured annual magnitudes and longer-term patterns over the measurement period from 1992 to 2017. This preliminary assessment indicates that the modified NEST model is capable of predicting gradual thaw subsidence in ice-rich permafrost environments over decadal timescales.</p>


2012 ◽  
Vol 49 (8) ◽  
pp. 865-876 ◽  
Author(s):  
Jennifer Throop ◽  
Antoni G. Lewkowicz ◽  
Sharon L. Smith

Climate – ground temperature relations are examined under a range of conditions for 10 sites across northern Canada. The sites are located between 60°N and 83°N and at elevations of 40 to 1840 m above sea level. They encompass various environmental and climatic conditions, with permafrost temperatures that range from just below 0 to –15 °C. The substrates range from bedrock to fine-grained sediment with high ice content, and vegetation types include coniferous forests in the Mackenzie Valley, shrub tundra at high elevation in the southern Yukon Territory, and polar desert in the High Arctic. Permafrost conditions at all of these sites are determined primarily by air temperature, followed by snow and substrate conditions. The apparent thermal diffusivity is relatively high at colder sites and in bedrock and is lower at sites in sediment with high ice content. Snow has a greater influence on air–ground temperature relations at sites where mean annual air temperatures and active-layer moisture contents are relatively high, leading to physically significant latent heat effects and a slower freeze-back of the active layer.


2020 ◽  
pp. 52-62
Author(s):  
A.A. Shestakova ◽  

Digital thematic maps of the modern condition of permafrost landscapes of Yakutia on a scale of 1:1 500 000 have been compiled. A quantitative analysis of the patterns of their spatial distribution was carried out, the differentiation of permafrost landscapes by geocryological characteristics was made, and the areas that are most vulnerable to modern climate change and anthropogenic impacts were identified. The analysis of a series of digital thematic maps of the modern condition of permafrost landscapes in Yakutia showed that 34% of the total territory is occupied by landscapes with soil temperatures from −2 to −4 °C, the least common high-temperature permafrost landscapes (from 0 to −2 °C) – about 4% of the territory. Landscapes with active layer thickness values of about 1 m are spread over 36% of the territory, which is the highest indicator. Insignificant territories (up to 3%) are occupied by landscapes with active layer thickness of up to 3 and 3,5 m. The most widespread landscapes are those with low-ice deposits (less than 0,2) – 38,7%, and landscapes with heavy-ice deposits (more than 0,4) occupy 31%. The most dangerous process is thermokarst, which occurs in the interalassic and slightly drained types of terrain. Key words: permafrost landscape, temperature of soils, ice content of deposits, cryogenic processes, digital maps, GIS model.


Author(s):  
Zhaohui Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

AbstractAlaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to impact soil layers beneath through the harmonic fluctuation of the active layer, and warmer air temperature can result in progressive permafrost thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a permafrost environment in Northern Alaska. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings for the last quarter-century. It is found that the active layer thickness increases, with the amount depending on climate model predictions and ground surface conditions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that thaw strain is most significant in the near-surface layers, indicating that settlement would be concurrent with annual thaw penetration. Moreover, ice content is a major factor in the settlement prediction. This assessment methodology, after improvement, and the results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 462
Author(s):  
Alyona A. Shestakova ◽  
Alexander N. Fedorov ◽  
Yaroslav I. Torgovkin ◽  
Pavel Y. Konstantinov ◽  
Nikolay F. Vasyliev ◽  
...  

The purpose of this article was to compile four separate digital thematic maps of temperature and ice content of permafrost, the active layer thickness, and cryogenic processes in Yakutia as a basis for assessing changes to modern climate changes and anthropogenic disturbances. In this work, materials on permafrost were used, serving as the basis for compiling a permafrost landscape map of the Republic of Sakha (Yakutia). The maps were compiled using ArcGIS software, which supports attribute table mapping. The ground temperature and active layer thickness maps reflected landscape zonality and regional differences. Peculiarities of genetic types of Quaternary deposits and climatic conditions reflected the ice content of surface sediments and cryogenic process distribution maps. One of the most common is ground temperatures from −2.1 to −4.0 °C, which were found to occupy about 37.4% of the territory of Yakutia. More than half of the region was found to be occupied by permafrost landscapes with a limited thickness of the active layer up to 1.1 m. Ice-rich permafrost (more than 0.4 in ice content) was found to be typical for about 40% of the territory. Thermokarst is the most hazardous process that occurs in half of Yakutia.


1998 ◽  
Vol 103 (D22) ◽  
pp. 28963-28973 ◽  
Author(s):  
F. E. Nelson ◽  
K. M. Hinkel ◽  
N. I. Shiklomanov ◽  
G. R. Mueller ◽  
L. L. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document