scholarly journals Levels of Apelin, Endoglin, and Transforming Growth Factor Beta 1 in Iraqi Women with Polycystic Ovary Syndrome

2020 ◽  
Vol 4 (1) ◽  
pp. 21-25
Author(s):  
Noor Alhuda K. Ibrahim ◽  
Wasnaa J. Mohammad ◽  
Sanan T. Abdawahab

Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women of reproductive age. The aim of the study was to determine the level of apelin, insulin resistance (IR), transforming growth factor beta 1 (TGF-β1), and endoglin in women with polycystic ovary syndrome. Fifty PCOS patients and 40 non-PCOS infertile patients were recruited. The fasting serum levels of folliclestimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), prolactin, fasting blood glucose, insulin, and apelin at the early follicular phase were measured. Levels of apelin, LH, LH/FSH, T, and fasting insulin, as well as homeostatic model assessment of IR (HOMA-IR) in PCOS patients, were significantly higher than in the control group. Correlation analysis showed that apelin level was positively correlated with body mass index and HOMA-IR. Apelin levels and TGF-β1 were significantly increased in PCOS patients while show decrease levels of endoglin.

2019 ◽  
Vol 25 (10) ◽  
pp. 638-646 ◽  
Author(s):  
Yan Li ◽  
Yungai Xiang ◽  
Yuxia Song ◽  
Lijing Wan ◽  
Guo Yu ◽  
...  

Abstract It is well established that microRNA (miRNA) expression profiles are altered in patients with polycystic ovary syndrome (PCOS). In addition, abnormal transforming growth factor beta (TGFB) signaling in granulosa cells is related to the pathological conditions of PCOS. However, the function of dysregulated miRNAs in PCOS is still unclear. In this study, we aimed to elucidate the roles of specific miRNAs in PCOS. We collected follicular fluid from 46 patients with PCOS and 32 healthy controls. Granulosa cells (GCs) were separated and the levels of six candidate miRNAs were determined by quantitative RT-PCR. The direct targets of three dysregulated miRNAs were predicted using bioinformatic tools and confirmed using a dual luciferase assay and immunoblotting. The biological function of three dysregulated miRNAs in primary GCs was determined using a cell proliferation assay and flow cytometry. We found that miR-423 expression was downregulated (P = 0.038), and the levels of miR-33b (P = 0.032) and miR-142 (P = 0.021) were upregulated in GCs from patients with PCOS, compared to controls. miR-423 directly repressed SMAD family member 7 (SMAD7) expression, while transforming growth factor beta receptor 1 (TGFBR1) was a direct target of both miR-33b and miR-142. An RNA oligonucleotide mixture containing miR-423 inhibitor, miR-33b mimic, and miR-142 mimic repressed TGFB signaling, promoted cell proliferation (P = 0.0098), repressed apoptosis (P = 0.027), and increased S phase cell numbers (P = 0.0036) in primary cultures of GCs, compared to the cells treated with a sequence scrambled control RNA oligonucleotide. This study unveiled the possible roles of three miRNAs in PCOS and might provide candidate biomarkers for PCOS diagnosis while in vivo functional studies, using transgenic or knockout mouse models, are expected to confirm the roles of dysregulated miRNAs in the pathogenesis of PCOS.


2015 ◽  
Vol 172 (1) ◽  
pp. R9-R21 ◽  
Author(s):  
Simona Gaberšček ◽  
Katja Zaletel ◽  
Verena Schwetz ◽  
Thomas Pieber ◽  
Barbara Obermayer-Pietsch ◽  
...  

Thyroid disorders, especially Hashimoto's thyroiditis (HT), and polycystic ovary syndrome (PCOS) are closely associated, based on a number of studies showing a significantly higher prevalence of HT in women with PCOS than in controls. However, the mechanisms of this association are not as clear. Certainly, genetic susceptibility contributes an important part to the development of HT and PCOS. However, a common genetic background has not yet been established. Polymorphisms of the PCOS-related gene for fibrillin 3 (FBN3) could be involved in the pathogenesis of HT and PCOS. Fibrillins influence the activity of transforming growth factor beta (TGFβ). Multifunctional TGFβ is also a key regulator of immune tolerance by stimulating regulatory T cells (Tregs), which are known to inhibit excessive immune response. With lower TGFβ and Treg levels, the autoimmune processes, well known in HT and assumed in PCOS, might develop. In fact, lower levels of TGFβ1 were found in HT as well as in PCOS women carrying allele 8 of D19S884 in the FBN3 gene. Additionally, vitamin D deficiency was shown to decrease Tregs. Finally, high estrogen-to-progesterone ratio owing to anovulatory cycles in PCOS women could enhance the immune response. Harmful metabolic and reproductive effects were shown to be more pronounced in women with HT and PCOS when compared with women with HT alone or with controls. In conclusion, HT and PCOS are associated not only with respect to their prevalence, but also with regard to etiology and clinical consequences. However, a possible crosstalk of this association is yet to be elucidated.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1844
Author(s):  
Marta Rybska ◽  
Magdalena Woźna-Wysocka ◽  
Barbara Wąsowska ◽  
Marek Skrzypski ◽  
Magdalena Kubiak ◽  
...  

Cystic endometrial hyperplasia (CEH) and pyometra are the most frequently diagnosed uterine diseases affecting bitches of different ages. Transforming growth factor beta (TGF-β) has been classified in females as a potential regulator of many endometrial changes during the estrous cycle or may be involved in pathological disorders. The aim of this study was to determine the expression of TGF-β1, -β2 and -β3 in the endometrium of bitches suffering from CEH or a CEH–pyometra complex compared to clinically healthy females (control group; CG). A significantly increased level of TGF-β1 mRNA expression was observed in the endometrium with CEH–pyometra compared to CEH and CG. Protein production of TGF-β1 was identified only in the endometrium of bitches with CEH–pyometra. An increase in TGF-β3 mRNA expression was observed in all the studied groups compared to CG. The expression of TGF-β2 mRNA was significantly higher in CEH and lower in CEH–pyometra uteri. The results indicate the presence of TGF-β cytokines in canine endometrial tissues affected by proliferative and degenerative changes. However, among all TGF-β isoforms, TGF-β1 could potentially be a key factor involved in the regulation of the endometrium in bitches with CEH–pyometra complex.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Tuan Van Nguyen ◽  
Ky Duc Ngo ◽  
Minh Hoang Thi ◽  
Lan Thi Phuong Dam ◽  
Thuan Quang Huynh

Background: The transforming growth factor-beta 1 (TGF-β1) has been demonstrated as one of the main factors in the progression of fibrosis and sclerosis glomerular damages. Glomerulonephritis is one common cause of chronic kidney disease (CKD) with the promotion of inflammatory renal damage containing fibrosis and sclerosis glomerular. Objectives: This study aimed to evaluate the TGF-β1 level in CKD patients and compare it with the healthy control group. Methods: This cross-sectional case-control study was carried out on 212 subjects admitted to the Nghe An Friendship General Hospital in Vietnam from March 2018 to February 2020. The case group included 152 patients diagnosed with CKD caused by glomerulonephritis, and the control group included 60 healthy individuals. The TGF-β1 was determined in serum by ELISA method. Results: The serum TGF-β1 concentration of the healthy control group and CKD group was 13.45 ± 7.17 and 32.35 ± 11.74, respectively. The CKD group had a significantly higher TGF-β1 level than the control group (P < 0.05). The CKD group with the eGRP ≥ 60 mL/min/1.73 m2 group had a higher TGF-β1 level than the eGRP < 60 mL/min/1.73 m2 group, and the TGF-β1 level increased from stage 1 to stage 5 (P < 0.001). The TGF-β1 had a medium correlation to urea, creatinine, and hs-CRP. Conclusions: The concentration of TGF-β1 in the CKD group was higher than the control group so that it increased early from the first stage of the disease.


2004 ◽  
Vol 19 (3) ◽  
pp. 236-239 ◽  
Author(s):  
A. Lebrecht ◽  
C. Grimm ◽  
G. Euller ◽  
E. Ludwig ◽  
E. Ulbrich ◽  
...  

Transforming growth factor beta (TGF-β)1 is thought to be involved in breast carcinogenesis. TGF-β1 acts in an antiproliferative manner in the early stages of breast carcinogenesis, but promotes tumor progression and metastases in the advanced stages of the disease. No data have been published on serum TGF-β1 in breast cancer. We investigated TGF-β1 serum levels in patients with breast cancer (n=135), ductal carcinoma in situ (DCIS) I to III (n=67) or fibroadenoma (n=35), and in healthy women (n=40) to determine its value as a differentiation marker between malignant, pre-invasive and benign diseases and as a predictive marker for metastatic spread. Median (range) TGF-β1 serum levels in patients with breast cancer, DCIS I-III or benign breast lesions and in healthy women were 48.8 (18–82.4) pg/mL, 45.3 (26.9–58.3) pg/mL, 47.2 (17.2–80.5) pg/mL and 51.6 (30.9–65.1) pg/mL, respectively (p=0.2). In breast cancer patients TGF-β1 serum levels showed no statistically significant correlation with tumor stage, lymph node involvement, histological grade, estrogen receptor status and progesterone receptor status. Our data fail to indicate any correlation between serum TGF-β1 levels and clinicopathological parameters of breast diseases. Serum TGF-β1 levels do not provide clinical information in addition to established tumor markers.


2018 ◽  
Vol 243 (7) ◽  
pp. 601-612 ◽  
Author(s):  
Nathan Cho ◽  
Shadi E Razipour ◽  
Megan L McCain

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.


2017 ◽  
Vol 49 (2) ◽  
pp. 87
Author(s):  
Ramadhan Hardani Putra ◽  
Eha Renwi Astuti ◽  
Rini Devijanti Ridwan

Background: Radiographic examination is often used in dentistry to evaluate tooth extraction complications. X-ray used in radiographic examination, however, has negative effects, including damage to DNA and inflammatory response during wound healing process. Purpose: This study aimed to analyze the effects of X-ray irradiation on transforming growth factor beta 1 (TGF-ß1) expression and number of inflammatory cells in tooth extraction sockets. Method: Thirty rats were divided into three groups, which consist of control group (with a radiation of 0 mSv), treatment group 1 (with a radiation of 0.08 mSv), and treatment group 2 (with a radiation of 0.16 mSv). These rats in each group were sacrificed on days 3 and 5 after treatment. Inflammatory cells which were observed in this research were PMN, macrophages, and lymphocytes. Histopathological and immunohistochemical examinations were used to calculate the number of inflammatory cells and TGF-ß1 expression. Obtained data were analyzed using SPSS 16.0 software with one way ANOVA and Tukey’s HSD tests. Result: There was no significant decrease in the number of PMN. On the other hand, there were significant decreases in the number of macrophages and lymphocytes in the sacrificed group on day-5 with the radiation of 0.16 mSv. Similarly, the most significant decreased expression of TGF-ß1 was found in the group sacrificed on day 5 with the radiation of 0.16 mSv. Conclusion: X-ray irradiation with 0.08 mSv and 0.16 mSv doses can decrease TGF-ß1 expression and number of inflammatory cells in tooth extraction sockets on day 3 and 5 post extraction.


Sign in / Sign up

Export Citation Format

Share Document