PEMBUATAN ROTARY MIXER UNTUK PENCAMPURAN PARTIKEL KAYU DENGAN PEREKAT

2010 ◽  
Vol 2 (2) ◽  
pp. 36
Author(s):  
Anhar Firdaus

One of the important auxiliary processes in the wood processing industry, especially making particle board or fiberboard is gluing. Bonding process is influenced by the type of adhesive material, process and place of gluing, apart from the nature of the taped material. Until now, the adhesive material commonly used include synthetic adhesive Urea Formaldehyde (UF), Phenol Formaldehyde (PF) or Melamine Formaldehyde (MF).The rotary mixer is designed in a simple to mixing between partiket with glue that adhesion earns homogen. Rotary mixer has 5 (five) major units, namely: the framework tools (foundation), tubes mixing, mixer circuit, drive circuit and compressor. The working principle of this tool is stirring directly between the wood particles with adhesive. Material in the form of wood particles (after a specified weight) is inserted first into the mixing tube. Once the machine is turned on, a series of rotating stirrer will stir load (material particles). The next process is to insert adhesive into the tube, either by spraying or directly poured slowly little by little. Key wood : particles, adhesive, rotary mixer.

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1166 ◽  
Author(s):  
Ján Iždinský ◽  
Zuzana Vidholdová ◽  
Ladislav Reinprecht

The effective recovery of wood waste generated in wood processing and also at the end of wood product life is important from environmental and economic points of view. In a laboratory, 16 mm-thick three-layer urea–formaldehyde (UF)-bonded particleboards (PBs) were produced at 5.8 MPa and 240 °C and with an 8 s/mm pressing factor, using wood particles prepared from (1) fresh spruce wood (C), (2) a mixture of several recycled wood products (R1), and (3) recycled faulty PBs bonded with UF resin (R2). Particles from spruce wood were combined with particles from R1 or R2 recyclates in weight ratios of 100:0, 80:20, 50:50 and 0:100. In comparison to the control spruce PB, the PBs containing the R1 recyclate from old wood products were characterized by lower thickness swelling after 2 and 24 h (TS-2h and TS-24h), lower by 18 and 31%; water absorption after 2 and 24 h (WA-2h and WA-24h), lower by 33 and 28%; modulus of rupture in bending (MOR), lower by 28%; modulus of elasticity in bending (MOE), lower by 18%; internal bond (IB), lower by 33%; and resistance to decay determined by the mass loss under the action of the brown-rot fungus Coniophora puteana (Δm), lower by 32%. The PBs containing the R2 recyclate from faulty PBs were also characterized by a lower TS-2h and TS-24h, lower by 45% and 59%; WA-2h and WA-24h, lower by 61% and 51%; MOR, lower by 37%; MOE, lower by 17%; and IB, lower by 33%; however, their biological resistance to C. puteana was more effective, with a decreased Δm in the decay test, lower by 44%.


2018 ◽  
Vol 7 (2) ◽  
pp. 26-29
Author(s):  
Deepak Dhand

There is an increased awareness to preserve the environment in the present day society. Rice Husk (RH),is the widely available agricultural wastes and is a serious concern for the environment. It is a potential material for use as alternative material in the construction and insulation industry. The particle board made from rice husk (RH) or rice husk ash (RHA), bonded by resin under the application of pressure and temperature. Urea formaldehyde is the organic resin used in general for interior use whereas phenol formaldehyde for external disclosure. The said resins are preferred for their water-resistant properties and better binding strength. The present study investigates the potential of rice husk reinforced boards by experimenting the different compositions and thicknesses. The objective is to perform a thermal analysis of the processed Rice husk boards. Boards made from rice husk are biodegradable unlike glass wool & other synthetic insulations. After experimenting on different fabrication conditions, six samples were finalized and were tested for physical and thermal viability in their applications. This study found that by adding ash of rice husk, the density of board decreases with respect to the board of same weight and consisting of rice husk only. Moisture Content is higher in case of boards with RHA but is within permissible limits. RHA reinforced boards have improved thermal properties, which is desirable in case of insulation boards.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 511
Author(s):  
Roman Réh ◽  
Ľuboš Krišťák ◽  
Ján Sedliačik ◽  
Pavlo Bekhta ◽  
Monika Božiková ◽  
...  

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.


Holzforschung ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Karin Fackler ◽  
Thomas Kuncinger ◽  
Thomas Ters ◽  
Ewald Srebotnik

Abstract Enzymatic functionalization is an attractive tool to provide a reactive interface for further processing of lignocellulosic materials, such as wood particles and fibers. Here, spruce wood particles have been functionalized by fungal laccase combined with 4-hydroxy-3-methoxy-benzylamine (HMBA) or 4-hydroxy-3-methoxybenzylurea (HMBU). The expectation was crosslinking with resins in subsequent glueing processes, which should improve strength properties of particle boards. Essential process parameters, such as liquid to solid mass ratio and treatment time, were optimized on a laboratory scale resulting in HMBA and HMBU binding yields of 90% and above as determined by radiochemical mass balance analysis. We employed a multifactorial experimental design for board production from treated wood particles and urea/formaldehyde resin. Mechanical testing and multivariate data analysis revealed, for the first time, an increase of internal bond (IB) as a result of functionalization with HMBU. HMBA was not successful. Variance analysis of relevant parameters and their interactions demonstrated a highly significant difference (P>99.99%) between boards treated with laccase/HMBU versus untreated wood particles. Due to positive interactions, functionalization was most effective at high bulk density (750 kg m-3) and high resin content (10%) resulting in a calculated IB improvement of 0.12 N m-2 (21%).


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4196
Author(s):  
Sofia Gonçalves ◽  
João Ferra ◽  
Nádia Paiva ◽  
Jorge Martins ◽  
Luísa H. Carvalho ◽  
...  

Lignin is a widely abundant renewable source of phenolic compounds. Despite the growing interest on using it as a substitute for its petroleum-based counterparts, only 1 to 2% of the global lignin production is used for obtaining value-added products. Lignosulphonates (LS), derived from the sulphite pulping process, account for 90% of the total market of commercial lignin. The most successful industrial attempts to use lignin for wood adhesives are based on using this polymer as a partial substitute in phenol-formaldehyde or urea-formaldehyde resins. Alternatively, formaldehyde-free adhesives with lignin and lignosulphonates have also been developed with promising results. However, the low number of reactive sites available in lignin’s aromatic ring and high polydispersity have hindered its application in resin synthesis. Currently, finding suitable crosslinkers for LS and decreasing the long pressing time associated with lignin adhesives remains a challenge. Thus, several methods have been proposed to improve the reactivity of lignin molecules. In this paper, techniques to extract, characterize, as well as improve the reactivity of LS are addressed. The most recent advances in the application of LS in wood adhesives, with and without combination with formaldehyde, are also reviewed.


Sign in / Sign up

Export Citation Format

Share Document