scholarly journals Fabrication and Analysis of Thermal Insulation Boards from Rice Husk

2018 ◽  
Vol 7 (2) ◽  
pp. 26-29
Author(s):  
Deepak Dhand

There is an increased awareness to preserve the environment in the present day society. Rice Husk (RH),is the widely available agricultural wastes and is a serious concern for the environment. It is a potential material for use as alternative material in the construction and insulation industry. The particle board made from rice husk (RH) or rice husk ash (RHA), bonded by resin under the application of pressure and temperature. Urea formaldehyde is the organic resin used in general for interior use whereas phenol formaldehyde for external disclosure. The said resins are preferred for their water-resistant properties and better binding strength. The present study investigates the potential of rice husk reinforced boards by experimenting the different compositions and thicknesses. The objective is to perform a thermal analysis of the processed Rice husk boards. Boards made from rice husk are biodegradable unlike glass wool & other synthetic insulations. After experimenting on different fabrication conditions, six samples were finalized and were tested for physical and thermal viability in their applications. This study found that by adding ash of rice husk, the density of board decreases with respect to the board of same weight and consisting of rice husk only. Moisture Content is higher in case of boards with RHA but is within permissible limits. RHA reinforced boards have improved thermal properties, which is desirable in case of insulation boards.

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2020 ◽  
Vol 17 (2) ◽  
pp. 91-97
Author(s):  
C.R. Sahoo ◽  
T.K. Bastia ◽  
A. Vikram ◽  
B.B. Kar

2010 ◽  
Vol 69 ◽  
pp. 63-68 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sansanee Boonsalee ◽  
Suvimol Sajjavanich ◽  
Chiara Ponzoni ◽  
Elie Kamseu ◽  
...  

Geopolymer has been developed as an alternative material to Portland cement. Geopolymer is based on the polymerization of alkaline activation and oxide of silicon and aluminium. These oxides can be found in many pozzolanic materials such as metakaolin and the wastes from industries and agricultures in Thailand, e.g., fly ash, bagasse ash and rice husk ash. Pozzolanic materials were selected as source materials for making geopolymers into 4 different types. Sodium hydroxide concentration of 10 Molar (10MNaOH) and sodium silicate (Na2SiO3) solutions were used as alkaline activators by the mass ratio of Na2SiO3/NaOH at 1.5. The mixtures were cast in 25×25×25 mm. cubes. After casting, the geopolymers were cured at 80๐C for 24 hrs. in an oven and then at room temperature for 7 days. The pozzolanic materials effects, the Si/Al molar ratio and the Na/Al molar ratio were studied and characterized. An X-ray fluorescence (XRF) was chosen to determine the percentages of silica and alumina in order to verify the proper ratio of the fly ash, Rice husk ash, Bagasse ash and Metakaolin.The study also included the impact on mechanical and physical properties such as compressive strength, water absorption, density and porosity.


2020 ◽  
Vol 4 (1) ◽  
pp. 29-36
Author(s):  
Hurul 'Ain ◽  
Alan Putranto ◽  
Betti Ses Eka Polonia ◽  
Ahmad Ravi

The effect of the addition of rice husk ash (rice husk ash) to the K-175 formula quality concrete mixture, as an aggregate mixture to the concrete compressive strength test using a Compression Testing Machine to get the compressive strength value of concrete and can be used as an alternative material as an additional material in making concrete in improving the quality of building construction. The study uses K-175 concrete quality characteristics as a test material. Test object in the shape of a cube with a size of 15cm x 15cm. With 4 variations in levels of addition of rice husk ash by 0%, 1.5%, 3.5%, and 5% by weight of cement. The husk ash used is the husk ash that escaped the 2.36 mm filter size. From each type of mixture made 9 test specimens, every 3 specimens for the age of concrete 7 days, 14 days and 28 days. Concrete mortar design using ASTM method. With material sources using fine aggregate from the Pawan Ketapang River and coarse aggregate from Merak, Banten. Stages of implementation include examining the nature of aggregate materials, sample making, and testing of concrete compressive strength.


2017 ◽  
Author(s):  
I. Nyoman Sudiana ◽  
Seitaro Mitsudo ◽  
Muhammad Zamrun Firihu ◽  
La Aba ◽  
La Ode Ngkoimani ◽  
...  

2010 ◽  
Vol 2 (2) ◽  
pp. 36
Author(s):  
Anhar Firdaus

One of the important auxiliary processes in the wood processing industry, especially making particle board or fiberboard is gluing. Bonding process is influenced by the type of adhesive material, process and place of gluing, apart from the nature of the taped material. Until now, the adhesive material commonly used include synthetic adhesive Urea Formaldehyde (UF), Phenol Formaldehyde (PF) or Melamine Formaldehyde (MF).The rotary mixer is designed in a simple to mixing between partiket with glue that adhesion earns homogen. Rotary mixer has 5 (five) major units, namely: the framework tools (foundation), tubes mixing, mixer circuit, drive circuit and compressor. The working principle of this tool is stirring directly between the wood particles with adhesive. Material in the form of wood particles (after a specified weight) is inserted first into the mixing tube. Once the machine is turned on, a series of rotating stirrer will stir load (material particles). The next process is to insert adhesive into the tube, either by spraying or directly poured slowly little by little. Key wood : particles, adhesive, rotary mixer.


In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


2014 ◽  
Vol 27 (2) ◽  
pp. 148-160
Author(s):  
Hassan K. Hassan ◽  
Najla J. Al-Amiri ◽  
Mohammed M. Yassen

Sign in / Sign up

Export Citation Format

Share Document