scholarly journals STUDY ON VERTICAL STRUCTURE OF MARINE BOUNDARY LAYER OVER PALAU

2016 ◽  
Vol 2 (6) ◽  
Author(s):  
S Venkata Raju ◽  
K Madhusudhana

Atmospheric Boundary Layer (ABL) over land and ocean surface is quite diriment because of the differing dynamic and thermodynamic characteristics of both the surface. The structure and characteristics of the ABL over the oceanic surface, often known as the Marine Boundary Layer (MBL) plays an important role in regulating the surface energy, moisture fluxes and in controlling the convective transfer of energy moisture of the free atmosphere. It is imperative for coupled ocean-atmosphere modelling and numerical weather prediction. PALAU (Pacific Area Long-term Atmospheric observation for the Understanding of climate change) over Aimeliik state of Babeldaob Island (7.45° N; 134.47° E) of Republic of Palau field study can advances our knowledge of marine stratocumulus by providing information on the boundary layer and cloud structure, as well as their diurnal cycle.

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Salter SH ◽  

Elevated sea-surface temperatures are a necessary but not sufficient requirement for the formation of hurricanes and typhoons. This paper suggests a way to exploit this. Twomey [1] showed that cloud reflectivity depends on the size-distribution of cloud drops, with a large number of small drops reflecting more than a smaller number of larger ones. Mid-ocean air is cleaner than over land. Latham [2-4] suggested that reflectivity of marine stratocumulus clouds could be increased by releasing a submicron spray of filtered sea water into the bottom of the marine boundary layer. The salt residues left after evaporation would be mixed by turbulence through the full depth of the marine boundary layer and would be ideal cloud condensation nuclei. Those that reached a height where the air had a super-saturation above 100% by enough to get over the peak of the Köhler curve would produce an increased number of cloud drops and so trigger the Twomey effect. The increase in reflection from cloud tops back out to space would cool sea-surface water. We are not trying to increase cloud cover; we just want to make existing cloud tops whiter. The spray could be produced by wind-driven vessels cruising chosen ocean regions. The engineering design of sea-going hardware is well advanced. This paper suggests a way to calculate spray quantities and the number and cost of spray vessels to achieve a hurricane reduction to a more acceptable intensity. It is intended to show the shape of a possible calculation with credible if not exact assumptions. Anyone with better assumptions should be able to follow the process.


Author(s):  
Laura M. Tomkins ◽  
David B. Mechem ◽  
Sandra E. Yuter ◽  
Spencer R. Rhodes

AbstractLarge, abrupt clearing events have been documented in the marine stratocumulus cloud deck over the subtropical Southeast Atlantic Ocean. In these events, clouds are rapidly eroded along a line hundreds–to–thousands of kilometers in length that generally moves westward away from the coast. Because marine stratocumulus clouds exert a strong cooling effect on the planet, any phenomenon that acts to erode large areas of low clouds may be climatically important. Previous satellite-based research suggests that the cloud-eroding boundaries may be caused by westward-propagating atmospheric gravity waves rather than simple advection of the cloud. The behavior of the coastal offshore flow, which is proposed as a fundamental physical mechanism associated with the clearing events, is explored using the Weather Research and Forecasting model. Results are presented from several week-long simulations in the month of May when cloud-eroding boundaries exhibit maximum frequency. Two simulations cover periods containing multiple cloud-eroding boundaries (active periods), and two other simulations cover periods without any cloud-eroding boundaries (null periods). Passive tracers and an analysis of mass flux are used to assess the character of the diurnal west-African coastal circulation. Results indicate that the active periods containing cloud-eroding boundaries regularly experience stronger and deeper nocturnal offshore flow from the continent above the marine boundary layer, compared to the null periods. Additionally, we find that the boundary layer height is higher in the null periods than in the active periods, suggesting that the active periods are associated with areas of thinner clouds that may be more susceptible to cloud erosion.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 520 ◽  
Author(s):  
Andrea I. Flossmann ◽  
Wolfram Wobrock

Cloud processing of aerosol particles is an important process and is, for example, thought to be responsible for the so-called “Hoppel-minimum” in the marine aerosol particle distribution or contribute to the cell organization of marine boundary layer clouds. A numerical study of the temporal and spatial scales of the processing of aerosol particles by typical marine stratocumulus clouds is presented. The dynamical framework is inspired by observations during the VOCALS (Variability of the American Monsoon System Ocean-Cloud-Atmosphere-Land Study) Regional Experiment in the Southeast Pacific. The 3-D mesoscale model version of DESCAM (Detailed Scavenging Model) follows cloud microphysics of the stratocumulus deck in a bin-resolved manner and has been extended to keep track of cloud-processed particles in addition to non-processed aerosol particles in the air and inside the cloud drops. The simulation follows the evolution of the processing of aerosol particles by the cloud. It is found that within one hour almost all boundary layer aerosol particles have passed through at least one cloud cycle. However, as the in-cloud residence times of the particles in the considered case are only on the order of minutes, the aerosol particles remain essentially unchanged. Our findings suggest that in order to produce noticeable microphysical and dynamical effects in the marine boundary layer clouds, cloud processing needs to continue for extended periods of time, exceeding largely the time period considered in the present study. A second model study is dedicated to the interaction of ship track particles with marine boundary layer clouds. The model simulates quite satisfactorily the incorporation of the ship plume particles into the cloud. The observed time and spatial scales and a possible Twomey effect were reproduced.


2012 ◽  
Vol 12 (5) ◽  
pp. 11539-11566 ◽  
Author(s):  
L. Haszpra ◽  
M. Ramonet ◽  
M. Schmidt ◽  
Z. Barcza ◽  
Z. Pátkai ◽  
...  

Abstract. Eight years of occasional flask air sampling and 3 yr of frequent in situ measurements of carbon dioxide (CO2) vertical profiles on board of a small aircraft, over a tall tower greenhouse gases monitoring site in Hungary are used for the analysis of the variations of vertical profile of CO2 mole fraction. Using the airborne vertical profiles and the measurements along the 115 m tall tower it is shown that the measurements at the top of the tower estimate the mean boundary layer CO2 mole fraction during the mid-afternoon fairly well, with an underestimation of 0.27–0.85 μmol mol−1 in summer, and an overestimation of 0.66–1.83 μmol mol−1 in winter. The seasonal cycle of CO2 mole fraction is damped with elevation. While the amplitude of the seasonal cycle is 28.5 μmol mol−1 at 10 m above the ground, it is only 10.7 μmol mol−1 in the layer of 2500–3000 m corresponding to the lower free atmosphere above the well-mixed boundary layer. The maximum mole fraction in the layer of 2500–3000 m can be observed around 25 March on average, two weeks ahead of that of the marine boundary layer reference (GLOBALVIEW). By contrast, close to the ground, the maximum CO2 mole fraction is observed late December, early January. The specific seasonal behavior is attributed to the climatology of vertical mixing of the atmosphere in the Carpathian Basin.


Author(s):  
Virendra P. Ghate ◽  
Maria P. Cadeddu ◽  
Xue Zheng ◽  
Ewan O’Connor

AbstractMarine stratocumulus clouds are intimately coupled to the turbulence in the boundary layer and drizzle is known to be ubiquitous within them. Six years of data collected at the Atmospheric Radiation Measurement (ARM)’s Eastern North Atlantic site are utilized to characterize turbulence in the marine boundary layer and air motions below stratocumulus clouds. Profiles of variance of vertical velocity binned by wind direction (wdir) yielded that the boundary layer measurements are affected by the island when the wdir is between 90° and 310° (measured clockwise from North where air is coming from). Data collected during the marine conditions (wdir<90 or wdir>310) showed that the variance of vertical velocity was higher during the winter months than during the summer months due to higher cloudiness, wind speeds, and surface fluxes. During marine conditions the variance of vertical velocity and cloud fraction exhibited a distinct diurnal cycle with higher values during the nighttime than during the daytime. Detailed analysis of 32 cases of drizzling marine stratocumulus clouds showed that for a similar amount of radiative cooling at the cloud top, within the sub-cloud layer 1) drizzle increasingly falls within downdrafts with increasing rain rates, 2) the strength of the downdrafts increases with increasing rain rates, and 3) the correlation between vertical air motion and rain rate is highest in the middle of the sub-cloud layer. The results presented herein have implications for climatological and model evaluation studies conducted at the ENA site, along with efforts of accurately representing drizzle-turbulence interactions in a range of atmospheric models.


2019 ◽  
Vol 32 (10) ◽  
pp. 2991-3004 ◽  
Author(s):  
Juan P. Díaz ◽  
Francisco J. Expósito ◽  
Juan C. Pérez ◽  
Albano González ◽  
Yuqing Wang ◽  
...  

Abstract The marine boundary layer (MBL) is a key component of Earth’s climate system, and its main characteristics (height, entrainment efficiency, energy and mass fluxes, cloud formation processes, etc.) are closely linked to the properties of the inversion layer, which generally determines its height. Furthermore, cloud response to a warmer climate, one of the main sources of uncertainty in future climate projections, is highly dependent on changes in the MBL and in the inversion-layer properties. Long-term trends of the time series of MBL parameters at 32 stations in the Atlantic Ocean have been analyzed using conveniently homogenized radiosonde profiles from 1981 to 2010. In general, decreasing trends are found in the strength and thickness of the inversion layer and in the difference between the precipitable water vapor (PWV) in the free troposphere and the MBL. In contrast, positive trends are found in the height of the bottom of the inversion layer, the lapse rates of virtual and equivalent potential temperatures, the PWV within the boundary layer, and the sea surface temperature (SST). The weakening trend of the inversion layer and the increasing desiccation of the free troposphere relative to the MBL could have important consequences for both the evolution of low cloud cover in a greenhouse-warming climate and the fragile local ecosystems, such as “cloud forests.”


2016 ◽  
Vol 16 (19) ◽  
pp. 12383-12396
Author(s):  
Tjarda J. Roberts ◽  
Marina Dütsch ◽  
Lars R. Hole ◽  
Paul B. Voss

Abstract. Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5–12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.


2008 ◽  
Vol 47 (3) ◽  
pp. 835-852 ◽  
Author(s):  
Jérôme Patoux ◽  
Ralph C. Foster ◽  
Robert A. Brown

Abstract Oceanic surface pressure fields are derived from the NASA Quick Scatterometer (QuikSCAT) surface wind vector measurements using a two-layer similarity planetary boundary layer model in the midlatitudes and a mixed layer planetary boundary layer model in the tropics. These swath-based surface pressure fields are evaluated using the following three methods: 1) a comparison of bulk pressure gradients with buoy pressure measurements in the North Pacific and North Atlantic Oceans, 2) a least squares difference comparison with the European Centre for Medium-Range Weather Forecasts (ECMWF) surface pressure analyses, and 3) a parallel spectral analysis of the QuikSCAT and ECMWF surface pressure fields. The correlation coefficient squared between scatterometer-derived pressure fields and buoys is found to be R2 = 0.936. The average root-mean-square difference between the scatterometer-derived and the ECMWF pressure fields ranges from 1 to 3 hPa, depending on the latitude and season, and decreases after the assimilation of QuikSCAT winds in the ECMWF numerical weather prediction model. The spectral components of the scatterometer-derived pressure fields are larger than those of ECMWF surface analyses at all scales in the midlatitudes and only at shorter wavelengths in the tropics.


2012 ◽  
Vol 12 (18) ◽  
pp. 8865-8875 ◽  
Author(s):  
L. Haszpra ◽  
M. Ramonet ◽  
M. Schmidt ◽  
Z. Barcza ◽  
Zs. Pátkai ◽  
...  

Abstract. Eight years of occasional flask air sampling and 3 years of frequent in situ measurements of carbon dioxide (CO2) vertical profiles on board of a small aircraft, over a tall tower greenhouse gases monitoring site in Hungary are used for the analysis of the variations of vertical profile of CO2 mole fraction. Using the airborne vertical profiles and the measurements along the 115 m tall tower it is shown that the measurements at the top of the tower estimate the mean boundary layer CO2 mole fraction during the mid-afternoon fairly well, with an underestimation of 0.27–0.85 μmol mol−1 in summer, and an overestimation of 0.66–1.83 μmol mol−1 in winter. The seasonal cycle of CO2 mole fraction is damped with elevation. While the amplitude of the seasonal cycle is 28.5 μmol mol−1 at 10 m above the ground, it is only 10.7 μmol mol−1 in the layer of 2500–3000 m corresponding to the lower free atmosphere above the well-mixed boundary layer. The maximum mole fraction in the layer of 2500–3000 m can be observed around 25 March on average, two weeks ahead of that of the marine boundary layer reference (GLOBALVIEW). By contrast, close to the ground, the maximum CO2 mole fraction is observed late December, early January. The specific seasonal behavior is attributed to the climatology of vertical mixing of the atmosphere in the Carpathian Basin.


2001 ◽  
Vol 1 (2) ◽  
pp. 277-335
Author(s):  
J. E. Williams ◽  
F. J. Dentener ◽  
A. R. van den Berg

Abstract. A 1-D marine stratocumulus cloud model has been supplemented with a comprehensive and up-to-date aqueous phase chemical mechanism for the purpose of assessing the impact that the presence of clouds and aerosols has on gas phase HOx, NOx and O3 budgets in the marine boundary layer. The simulations presented here indicate that cloud may act as a heterogeneous source of HONOg via the conversion of HNO4(g) at moderate pH (~4.5). The photolysis of nitrate (NO3-) has also been found to contribute to this simulated increase in HONOg by ~5% and also acts as a minor source of NO2(g). The effect of introducing deliquescent aerosol on the simulated increase of HONOg is negligible. The most important consequences of this elevation in HONOg are that, in the presence of cloud, gas phase concentrations of NOx species increase by a factor of 2, which minimises the simulated decrease in O3(g), and results in a regeneration of OHg. This partly compensates for the removal of OHg by direct phase transfer into the cloud and has important implications regarding the oxidising capacity of the marine boundary layer. The findings presented here also suggest that previous modelling studies, which neglect the heterogeneous HNO4(g) reaction cycle, may have over-estimated the role of clouds as a sink for OHg and O3(g)in unpolluted oceanic regions, by ~10% and ~2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document