scholarly journals A Unique Control Strategy and Power Management in Wind/Solar Renewable Energy Power System to Improve the Power Quality of Grid System

Author(s):  
Khashiya Parveen ◽  
Prof. Shravan Vishwakarma

Hybrid energy generation which includes both wind and solar energy has grown exponentially in latest years, and this will continue. Power quality problems such as voltage-swells, voltage-sags, harmonic components, power factor, and inadequate voltage control are caused by intermittent various exposures and the incorporation of wind-turbine and Photo-voltaic power generating systems with the grid. A Static Compensator (STATCOM) is employed to enhance power-quality. The power quality enhancement method for grid-connected wind-turbine and photo voltaic power plants employing STATCOM is introduced in this paper.  The framework of the proposed methodology describes in order to improve the transient voltage stability of the large-scale wind / solar hybrid system, the STATCOM reactive power compensation device is connected to the grid.   The compensator is offered to further improve output parameters such as voltage THD, current THD and active power.

2013 ◽  
Vol 724-725 ◽  
pp. 485-490 ◽  
Author(s):  
Ling Zhou ◽  
Xiao Fang Song ◽  
Hai Bo Xu ◽  
Kang Chang ◽  
Ji Chen Li ◽  
...  

This paper analyses the mechanism of large scale cascading trip-off failures of wind turbine generators in China, focuses on the reasons of trip-off caused by overvoltage. It analyses the model of Doubly Fed Induction Generation (DFIG) and builds a model of a wind farm that is composed of Doubly Fed Induction generators in DIgSILENT. The wind farm A with capacity of 175MW and wind farm B with capacity of 175MW is accessed to the nine bus system. The simulation reproduces the processes of the cascading trip-off of wind turbine generators caused by undervoltage and overvoltage. The trip-off caused by undervoltage is due to the lack of Low Voltage Ride Through (LVRT). And that the capacitive reactive power compensation device is not timely removed leads to a large surplus of reactive power, then the voltage rises, so the wind turbine generators trip off because of overvoltage. By setting the contrast scenario, the result shows that if capacitive reactive power compensation device is promptly removed after the loss of a large amount of active power, the wind turbine generators will not trip off because of overvoltage.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Author(s):  
C. Bharatiraja ◽  
Harish Chowdary V

Power Quality (PQ) brings more challenges to the large- scale and medium scale industries because in the recent years most of them use high efficiency and low energy devices which cause vulnerable PQ disturbances at Point of Common Coupling (PCC). In this paper, the measurement at different times during load condition and analysis of all types of disturbances occurred has been done. When large rated equipments run, the disturbance (harmonics, RMS variations, and switching transients) levels are very high and poor power factor (PF) has also appeared. Due to this poor PF, reactive power consumption in load increases and accordingly total power increases. An electronic device such as LED lights, fluorescent lamps, computers, copy machines, and laser printers also disturb the supply voltage. We are very well known that every PQ problem directly or indirectly must affect economically. Many researchers have investigated PQ audit for over three decades. However these studies and analysis have been done only at simulation level. Hence, the PQ analyzer based study is required to find out the PQ issues at distribution feeders. It will be a valuable guide for researchers, who are interested in the domain of PQ and wish to explore the opportunities offered by these techniques for further improvement in the field of PQ. This paper gives a brief Real Time PQ measurement using PQ analyzer HIOKI PW3198 at Distribution Feeders and it gives an idea to the researcher to optimize problems-related to PQ with respect to the high rated and low rated electric machinery of different feeders at PCC level. This study further extends to analyze the grid disturbances and looks forward to the optimization methods for each individual PQ disturbance.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3556
Author(s):  
Linan Qu ◽  
Shujie Zhang ◽  
Hsiung-Cheng Lin ◽  
Ning Chen ◽  
Lingling Li

The large-scale renewable energy power plants connected to a weak grid may cause bus voltage fluctuations in the renewable energy power plant and even power grid. Therefore, reactive power compensation is demanded to stabilize the bus voltage and reduce network loss. For this purpose, time-series characteristics of renewable energy power plants are firstly reflected using K-means++ clustering method. The time group behaviors of renewable energy power plants, spatial behaviors of renewable energy generation units, and a time-and-space grouping model of renewable energy power plants are thus established. Then, a mixed-integer optimization method for reactive power compensation in renewable energy power plants is developed based on the second-order cone programming (SOCP). Accordingly, power flow constraints can be simplified to achieve reactive power optimization more efficiently and quickly. Finally, the feasibility and economy for the proposed method are verified by actual renewable energy power plants.


Author(s):  
Nitish Kumar Singh ◽  
Dashrath Kumar

The applications of wind energy develop much rapidly than the other renewable resources such as solar, geothermal and so on in the 21st century. It becomes the third core energy resource following non-conventional fuels as oil and chemical. Electrical energy generated by wind power plants is the best ever developing and most promising renewable energy source. The wind is a clean, free and limitless energy source. Wind Energy Generation Systems (WECS) are confront with increasing demands for power quality and harmonic distortion control. With the advance in power electronics technology, the fast growth of variable speed WECS is now witness. However, the power quality still remains an important issue to be addressed thoroughly by researchers. This paper presents a comparative study on grid connected WECS having two different Wind Turbine Generator Systems (WTGS) using DFIG and PMSG.


this paper evaluates combination of DE algorithm and benders decomposition theorem of VMG is used to solving the large scale mixed integer programming problems. DE algorithm is implemented in Village area Micro grids. Village area micro grid and the required load is calculated regarding the sold out power or purchase power with the help of DE algorithm. Differential evolution algorithm is applied in the village area micro grid and measure the real power, reactive power of various power plants. . In this DE algorithm is implemented in village area micro grid and the survey period is two years. Final survey shows which month produce more power and sold out power in nearest city area electricity board, But in power shortage in village area micro grid ,it purchase the power from nearest electricity board.DE algorithm determine the one month power survey and benders decomposition determine the individual value of the power plants. But the benders decomposition theorem is not accept the non linearity items. To overcome this problem BDCT and DEA is implemented in village area micro grid. This combination is used to maintain the drop out voltage of any power plants.


Author(s):  
Sarita Samal ◽  
Prakash Kumar Hota

The  real problems in diminution of power quality occurs due to the rapid growth of nonlinear load are leads to sudden decrease of source voltage for a few seconds  i.e sag, swell, harmonics in source and load current, voltage unbalance etc. All these   problems can be compensated by using Unified Power Quality Controller (UPQC) and the operation of UPQC depends upon the available voltage across capacitor present in dc link. If the capacitor voltage is maintained constant then it gives satisfactory performance. The proposed research is basically on designing of Photo Voltaic (PV) /Wind energy fed to the dc link capacitor of UPQC so as to maintain proper voltage across it and operate the UPQC for power quality analysis. The said model is simulated in Matlab and results are verified by using FFT analysis.The proposed PV/ Wind energy-UPQC is design in Matlab simulation for reduction of voltage sag, swell, interruption of voltage, harmonics in load current and compensation of active and reactive power.


Sign in / Sign up

Export Citation Format

Share Document