scholarly journals ANALISIS KELONGSORAN PENGEMBANGAN RUAS JALAN BUJANGGA PINGGIRAN SUNGAI SEGAH KOTA TANJUNG REDEP KABUPATEN BERAU

2020 ◽  
Vol 9 (1) ◽  
pp. 35
Author(s):  
Bagus Eko Prasetyo ◽  
Mansyur Mansyur ◽  
Fahrudi Ahwan Ikhsan ◽  
Andri Estining Sejati

 This research discussed the effect of scouring on the stability of the slope on the Bujangga street STA 00+000 sd STA 00+075. A landslide had occurred in the development of a road located on the Bujangga riverside. The road is the result of widening which was previously only 2 lanes with a width of 8 m to 4 lanes with a width of 20 m. Landslides occured at STA 00+000 up to STA 00+075. At the STA the road experiences a landslide in the direction of the river to the elevation of the road surface down as deep as ± 2m. This research type is survey. Data was collected with documentation of post-landslide soil investigations, investigation of landslide conditions in the field, and sheet-pile slip simulation using the finite element method with helping the PLAXIS V.7.2 program. Data analysis with descriptive and back analysis to input soil parameters produces deformation and landslide mechanism that is relevant to actual conditions in the field. As a result of scouring of the river there is a reduction in passive pressure on the outside of the sheetpile which results in a decrease in the value of the safety factor of the road including other buildings such as settlements. This is indicated by the results of modeling and simulation above which gives the value of FS=1.2602 without scouring and FS=1.045 after scouring. The scouring of the river can be concluded that on a long-term scale the location is a landslide prone location.Keywords: Landslide Analysis, Finite Element, Road Development, Riverside  Penelitian ini membahas pengaruh scouring terhadap stabilitas lereng pada kelongsoran Jalan Bujangga STA 00+000 sd STA 00+075. Pernah terjadi kelongsoran pada pengembangan jalan yang berlokasi di pinggiran sungai Bujangga. Jalan tersebut merupakan hasil pelebaran yang sebelumnya hanya 2 lajur dengan lebar 8 m menjadi 4 lajur dengan lebar 20 m. Kelongsoran terjadi pada STA 00+000 sampai dengan STA 00+075. Pada STA tersebut jalan mengalami kelongsoran ke arah sungai hingga elevasi permukaan jalan turun sedalam ± 2m. Penelitian ini berjenis survey. Data dikumpulkan dengan dokumentasi penyelidikan tanah pasca longsoran, investigasi kondisi longsoran di lapangan, dan simulasi kelongsoran sheetpile menggunakan metode elemen hingga dengan bantuan program PLAXIS V.7.2. Analisis data dengan deskriptif dan back analysis hingga parameter tanah input menghasilkan deformasi dan mekanisme kelongsoran yang relevan dengan kondisi actual di lapangan. Akibat dari scouring atau gerusan sungai terjadi pengurangan tekanan pasif pada sisi luar sheetpile yang berakibat penurunan nilai faktor keamanan dari jalan termasuk bangunan lain seperti pemukiman. Hal tersebut ditunjukkan oleh hasil pemodelan dan simulasi di atas yang memberikan nilai FS=1.2602 tanpa scouring dan FS=1.045 setelah adanya scouring. Adanya gerusan pada bibir sungai dapat disimpulkan bahwa dalam skala jangka panjang lokasi tersebut merupakan lokasi rawan bencana longsoran.Kata Kunci: Analisis Longsoran, Elemen Hingga, Pengembangan Jalan, Pinggiran Sungai

1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


2019 ◽  
Vol 19 (10) ◽  
pp. 2079-2095 ◽  
Author(s):  
Michele Perrotti ◽  
Piernicola Lollino ◽  
Nunzio Luciano Fazio ◽  
Mario Parise

Abstract. The stability of man-made underground cavities in soft rocks interacting with overlying structures and infrastructures represents a challenging problem to be faced. Based upon the results of a large number of parametric two-dimensional (2-D) finite-element analyses of ideal cases of underground cavities, accounting for the variability both cave geometrical features and rock mechanical properties, specific charts have been recently proposed in the literature to assess at a preliminary stage the stability of the cavities. The purpose of the present paper is to validate the efficacy of the stability charts through the application to several case studies of underground cavities, considering both quarries collapsed in the past and quarries still stable. The stability graphs proposed by Perrotti et al. (2018) can be useful to evaluate, in a preliminary way, a safety margin for cavities that have not reached failure and to detect indications of predisposition to local or general instability phenomena. Alternatively, for sinkholes that already occurred, the graphs may be useful in identifying the conditions that led to the collapse, highlighting the importance of some structural elements (as pillars and internal walls) on the overall stability of the quarry system.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Adam J. Lobbestael ◽  
Adda Athanasopoulos-Zekkos ◽  
Josh Colley

The effects of progressive failure on flood embankments with underlying thin layers of soft, sensitive soils are investigated. Finite element analysis allows for investigation of strain-softening effects and progressive failure in soft and sensitive soils. However, limit equilibrium methods for slope stability analysis, widely used in industry, cannot capture these effects and may result in unconservative factors of safety. A parametric analysis was conducted to investigate the effect of thin layers of soft sensitive soils on the stability of flood embankments. A flood embankment was modeled using both the limit equilibrium method and the finite element method. The foundation profile was altered to determine the extent to which varying soft and sensitive soils affected the stability of the embankment, with respect to progressive failure. The results from the two methods were compared to determine reduction factors that can be applied towards factors of safety computed using limit equilibrium methods, in order to capture progressive failure.


2008 ◽  
Vol 45 (3) ◽  
pp. 393-407
Author(s):  
Chun Fai Leung ◽  
Rui Fu Shen

Gravity caissons were employed as part of the wharf front structures for a container port terminal in Singapore. This paper reports the movements of eight consecutive gravity caissons supported on sand compaction piles (SCPs) with highly variable lengths of penetration. It is established that the caisson movements increase with an increase in the length of the SCP, as longer SCPs are necessary when hard strata are at greater depth. The large caisson movements observed during caisson infilling and backfilling do not pose a concern because the wharf deck beams connecting adjacent caissons can be adjusted. However, the caisson movements under service loads would affect the operation of the overlying quay cranes on top of the caissons. The present field study reveals that preloading the caissons is effective in reducing the caisson movements under service loads because the observed caisson movements are insignificant during subsequent unloading–reloading of the caissons. Back-analysis using the finite element method (FEM) shows that the observed caisson movements at different construction stages can be reasonably replicated. The numerical results are also used to evaluate the caisson tilt angle, which could not be measured in the present field study. The caisson tilt is found to be independent of the length of SCPs underneath a caisson.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.


2011 ◽  
Vol 110-116 ◽  
pp. 1483-1490
Author(s):  
Hoon Hyung Jung ◽  
Chae Sil Kim

This paper describes a finite element structural analysis model and determines analysis methods appropriate for determining the stability of the mast of a crane. This analysis model allows various analysis approaches to be applied to the conditions affecting the construction of a large gantry crane in order to ensure the stability of the mast of the crane. The finite element method is used as a way to construct an analytical model that can help ensure the stability of the mast in two stages. The model is used in a two-stage analytical process that takes into account the conditions of the model. In this way, the model can be used to judge the stability of the mast. By allowing variation in the analysis approach used for the crane mast, the analysis model may be changed if the conditions of the one-girder gantry crane require. Designers may apply this method for the active analysis of the stability of a crane mast.


2007 ◽  
Vol 546-549 ◽  
pp. 1931-1934
Author(s):  
Chun Li Wu ◽  
Hai Liang Yang

Quench propagation velocity is an important parameter to the stability and protection issues of superconducting magnet. In this paper, the finite element method (FEM) numerical simulation of quench propagation velocity has been performed for using the powerful analysis software COSMOS by establishing a suitable thermal analysis model of Bi-2223/Ag superconducting multifilamentary tape. The effects of quench energy and operating temperature on the quench propagation velocity have been studied. The analysis shows that the simulation result basically coincides with the experimental result.


2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.


Sign in / Sign up

Export Citation Format

Share Document