scholarly journals FastRIFE: Optimization of Real-Time Intermediate Flow Estimation for Video Frame Interpolation

2021 ◽  
Vol 22 (1-2) ◽  
pp. 21-28
Author(s):  
Malwina Kubas ◽  
Grzegorz Sarwas

The problem of video inter-frame interpolation is an essential task in the field of image processing. Correctlyincreasing the number of frames in the recording while maintaining smooth movement allows to improve thequality of played video sequence, enables more effective compression and creating a slow-motion recording. Thispaper proposes the FastRIFE algorithm, which is some speed improvement of the RIFE (Real-Time IntermediateFlow Estimation) model. The novel method was examined and compared with other recently published algorithms.All source codes are available at:https://gitlab.com/malwinq/interpolation-of-images-for-slow-motion-videos.

Author(s):  
Minseop Kim ◽  
Haechul Choi

Recently, the demand for high-quality video content has rapidly been increasing, led by the development of network technology and the growth in video streaming platforms. In particular, displays with a high refresh rate, such as 120 Hz, have become popular. However, the visual quality is only enhanced if the video stream is produced at the same high frame rate. For the high quality, conventional videos with a low frame rate should be converted into a high frame rate in real time. This paper introduces a bidirectional intermediate flow estimation method for real-time video frame interpolation. A bidirectional intermediate optical flow is directly estimated to predict an accurate intermediate frame. For real-time processing, multiple frames are interpolated with a single intermediate optical flow and parts of the network are implemented in 16-bit floating-point precision. Perceptual loss is also applied to improve the cognitive performance of the interpolated frames. The experimental results showed a high prediction accuracy of 35.54 dB on the Vimeo90K triplet benchmark dataset. The interpolation speed of 84 fps was achieved for 480p resolution.


Author(s):  
Yu-Lun Liu ◽  
Yi-Tung Liao ◽  
Yen-Yu Lin ◽  
Yung-Yu Chuang

Video frame interpolation algorithms predict intermediate frames to produce videos with higher frame rates and smooth view transitions given two consecutive frames as inputs. We propose that: synthesized frames are more reliable if they can be used to reconstruct the input frames with high quality. Based on this idea, we introduce a new loss term, the cycle consistency loss. The cycle consistency loss can better utilize the training data to not only enhance the interpolation results, but also maintain the performance better with less training data. It can be integrated into any frame interpolation network and trained in an end-to-end manner. In addition to the cycle consistency loss, we propose two extensions: motion linearity loss and edge-guided training. The motion linearity loss approximates the motion between two input frames to be linear and regularizes the training. By applying edge-guided training, we further improve results by integrating edge information into training. Both qualitative and quantitative experiments demonstrate that our model outperforms the state-of-the-art methods. The source codes of the proposed method and more experimental results will be available at https://github.com/alex04072000/CyclicGen.


Author(s):  
FRANK Y. SHIH ◽  
KAI ZHANG

In this paper, we present a novel method to solve the inter-frame interpolation problem in image morphing. We use our improved snake model that is associated with the gravitational force field to locate control points in the object contours. Afterwards, we apply the greedy algorithm in free-form deformations to achieve optimal warps among feature point pairs in starting and ending frames. The new method uses an energy-minimization function under the influence of inter-frames. The energy serves to impose frame-wise and curve-wise constraints among the interpolated frames.


2014 ◽  
Vol 1681 ◽  
Author(s):  
Futao Kaneko ◽  
Takahiro Kawakami ◽  
Akira Baba ◽  
Kazunari Shinbo ◽  
Keizo Kato ◽  
...  

ABSTRACTA novel and fundamental method was reported to judge states of lithium ion batteries (LIBs) using the capacitance and the voltage of the cells that were estimated from the real-time currents and voltage characteristics of the cells. We measured the differential capacitance, that is, dQ/dV or delta Q/ delta V that is equal to the currents (I) divided by differential voltages (dV/dt) calculated from the current and the voltage characteristics of the cell during the charging/ discharging, where Q is the charge that flows through the cell, V is the voltage of the cell and t is time. It is thought that the capacitance decrease with the degradation of the cell because the effective area of the electrodes is decreasing due to formation of undesirable compounds. The differential capacitance in some specific voltage range for the LIBs was approximately directly proportional to the state of the degradation of the cell. Therefore, it is concluded that the novel method is very useful to judge the state of the LIBs.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4073 ◽  
Author(s):  
Wenhao Yang ◽  
Yue Liu ◽  
Fanming Liu

The Global Navigation Satellite Systems (GNSS) becomes the primary choice for device localization in outdoor situations. At the same time, many applications do not require precise absolute Earth coordinates, but instead, inferring the geometric configuration information of the constituent nodes in the system by relative positioning. The Real-Time Kinematic (RTK) technique shows its efficiency and accuracy in calculating the relative position. However, when the cycle slips occur, the RTK method may take a long time to obtain a fixed ambiguity value, and the positioning result will be a “float” solution with a low meter accuracy. The novel method presented in this paper is based on the Relative GNSS Tracking Algorithm (Regtrack). It calculates the changes in the relative baseline between two receivers without an ambiguity estimation. The dead reckoning method is used to give out the relative baseline solution while a parallel running Extended Kalman Filter (EKF) method reinitiates the relative baseline when too many validation failures happen. We conducted both static and kinematic tests to assess the performance of the new methodology. The experimental results show that the proposed strategy can give accurate millimeter-scale solutions of relative motion vectors in adjacent two epochs. The relative baseline solution can be sub-decimeter level with or without the base station is holding static. In the meantime, when the initial tracking point and base station coordinates are precisely obtained, the tracking result error can be only 40 cm away from the ground truth after a 25 min drive test in an urban environment. The efficiency test shows that the proposed method can be a real-time method, the time that calculates one epoch of measurement data is no more than 80 ms and is less than 10 ms for best results. The novel method can be used as a more robust and accurate ambiguity free tracking approach for outdoor applications.


2020 ◽  
Vol 34 (07) ◽  
pp. 10663-10671 ◽  
Author(s):  
Myungsub Choi ◽  
Heewon Kim ◽  
Bohyung Han ◽  
Ning Xu ◽  
Kyoung Mu Lee

Prevailing video frame interpolation techniques rely heavily on optical flow estimation and require additional model complexity and computational cost; it is also susceptible to error propagation in challenging scenarios with large motion and heavy occlusion. To alleviate the limitation, we propose a simple but effective deep neural network for video frame interpolation, which is end-to-end trainable and is free from a motion estimation network component. Our algorithm employs a special feature reshaping operation, referred to as PixelShuffle, with a channel attention, which replaces the optical flow computation module. The main idea behind the design is to distribute the information in a feature map into multiple channels and extract motion information by attending the channels for pixel-level frame synthesis. The model given by this principle turns out to be effective in the presence of challenging motion and occlusion. We construct a comprehensive evaluation benchmark and demonstrate that the proposed approach achieves outstanding performance compared to the existing models with a component for optical flow computation.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


Sign in / Sign up

Export Citation Format

Share Document