scholarly journals The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis

2017 ◽  
Vol 8 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Mona Moshiri ◽  
Mohammad Mehdi Soltan Dallal ◽  
Farhad Rezaei ◽  
Masoumeh Douraghi ◽  
Laleh Sharifi ◽  
...  
2004 ◽  
Vol 72 (9) ◽  
pp. 5498-5501 ◽  
Author(s):  
Mónica N. Giacomodonato ◽  
Sebastián H. Sarnacki ◽  
Roberto L. Caccuri ◽  
Daniel O. Sordelli ◽  
M. Cristina Cerquetti

ABSTRACT The temperature-sensitive dam mutant strain of Salmonella enterica serovar Enteritidis SD1 is highly attenuated and induces innate and protective immunity in mice. SD1 activates NF-κB and induces gamma interferon secretion. Early interaction of the SD1 mutant with intestinal epithelial cells was associated with ruffling of enterocytes. Invading bacteria were found inside Peyer's patches after inoculation.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.


Sign in / Sign up

Export Citation Format

Share Document