scholarly journals Effect of Intraspecific Larval Aggregation and Diet Type on Life-History Traits of Dermestes maculatus and Dermestes caninus (Coleoptera: Dermestidae): Species of Forensic Importance

2021 ◽  
Vol 6 (1(Special)) ◽  
pp. 83
Author(s):  
Rodrigo C. Corrêa ◽  
Rodrigo R.F. Carmo ◽  
Ann R. George ◽  
Jeffery K. Tomberlin

Introduction: Numerous studies have examined the effect of abiotic factors on the development and survival of Dermestes and their importance for forensic entomology. Dermestes maculatus is one of the most known beetle species associated with corpses and D. caninus has little biological information available and no case report records. To better understand the life-history traits of those species we evaluated the impact of diet type and intraspecific larval density. Methods: Adult beetles were collected from human remains and colonies were kept under controlled conditions (27.0 ± 1.0 °C, 55.0% RU, and 12:12 L:D) and F1 generation was used to collect eggs. Newly emerged larvae were separated according to the treatments, being the combination of larval density (1, 15, 30 individuals), food (dried dog food or dried pork) and contact (with or without). We used factorial-ANOVA to test the individual and combined effect of both larval densities and diet on dependent variables, followed by post-hoc Tukey test. Pearson correlations were carried out to evaluate the relationship between larval parameters for each species in each treatment. Results: Pork-based diet positively affected species fitness, with larvae being ca. 1.1 (D. caninus) and 1.7 (D. maculatus) times bigger and heavier than in dog food. Diet type also impacted the development time for both species. Conclusions: Data generated through the current study serve as a foundation for potential application of this species as an indicator of time of colonization in relations to a minPMI. However, validation is still needed to determine the accuracy and precision of these calculations.

2019 ◽  
Vol 112 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Brittny M Jones ◽  
Jeffery K Tomberlin

Abstract The black soldier fly, Hermetia illucens (L.), is economically important due to its use in waste management and as an alternative protein source for livestock, poultry, and aquaculture. While industry promotes mass production of the black soldier fly, little is known about the impact of larval competition on development time, resulting immature and adult weight, or adult longevity. The goal of this research was to examine the life-history traits of black soldier flies when reared at four densities (500, 1,000, 1,500, and 2,000 larvae/4-liter container) provided 54-g Gainesville diet at 70% moisture (feed rates of 0.027, 0.036, 0.054, and 0.108 g) every other day. Results were as expected with the lowest larval density (500) producing heavier individuals (by 26%) than the greatest larval density (2,000) across all life stages. In addition to weights, larvae reared at the lowest density developed 63% faster than those reared at the greatest density. In regard to pupal development time, those reared at the lowest larval density developed 3% slower than the greatest density. A 21% difference between the two extreme densities was found in survivorship to prepupal stage, with the lowest larval density having the greatest survivorship (92%) compared with the greatest larval density (70%). All densities displayed over 90% adult emergence rates. Such information is vital for optimization of the process of converting waste products to protein at an industrial scale with the black soldier fly.


2021 ◽  
pp. 1-12
Author(s):  
N.F. Addeo ◽  
C. Li ◽  
T.W. Rusch ◽  
A.J. Dickerson ◽  
A.M. Tarone ◽  
...  

Population growth and rapid urbanisation have increased the global demand for animal feed and protein sources. Therefore, traditional animal feed production should be increased through the use of alternative nutrient sources. Insects as feed are beginning to fill this need. One such insect is the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae). However, to more effectively mass produce the black soldier fly, a better understanding of its thermal biology is needed. Thus, the aim of this study was to evaluate the impact of age, size, and sex on adult black soldier fly thermal preference. The thermal preference of adult black soldier flies was determined by exposing flies to a thermal gradient with a range of surface temperatures and monitoring their positions over time. An aluminium plate was used to create a linear thermal gradient where surface temperatures ranged from ~15-60 °C. Flies were distinguished by age (1-d-post-emergence vs 7-d-post-emergence), size (large vs small) and sex (male vs female) to assess whether thermal preference differed by specific life-history traits. Thermal preference for 7-d-post-emergence adults was significantly lower (19.2 °C) than 1-d-post-emergence adults (28.7 °C), respectively. Similarly, small adults selected significantly cooler (21.1 °C) temperatures than large adults (26.9 °C). No significant differences in thermal preferences were found between sex, regardless of age or size. In fact, males and females had similar thermal preference of 23.8 and 24.2 °C, respectively. This study reveals that multiple life-history traits of adult black soldier fly affect their thermal preference, and thus should be taken into consideration by mass rearing facilities to optimize production.


2012 ◽  
Vol 58 (12) ◽  
pp. 1597-1608 ◽  
Author(s):  
Harish Padmanabha ◽  
Fabio Correa ◽  
Mathieu Legros ◽  
H. Fredrick Nijhout ◽  
Cynthia Lord ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 462
Author(s):  
Zuzanna M. Filipiak ◽  
Michał Filipiak

Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.


Parasitology ◽  
2011 ◽  
Vol 138 (7) ◽  
pp. 848-857 ◽  
Author(s):  
G. LOOT ◽  
N. POULET ◽  
S. BROSSE ◽  
L. TUDESQUE ◽  
F. THOMAS ◽  
...  

SUMMARYObjective. Unravelling the determinants of parasite life-history traits in natural settings is complex. Here, we deciphered the relationships between biotic, abiotic factors and the variation in 4 life-history traits (body size, egg presence, egg number and egg size) in the fish ectoparasite Tracheliastes polycolpus. We then determined the factors affecting the strength of the trade-off between egg number and egg size. Methods. To do so, we used 4-level (parasite, microhabitat, host and environment) hierarchical models coupled to a field database. Results. Variation in life-history traits was mostly due to individual characteristics measured at the parasite level. At the microhabitat level (fins of fish hosts), parasite number was positively related to body size, egg presence and egg number. Higher parasite number on fins was positively associated with individual parasite fitness. At the host level, host body size was positively related to the individual fitness of the parasite; parasites were bigger and more fecund on bigger hosts. In contrast, factors measured at the environmental level had a weak influence on life-history traits. Finally, a site-dependent trade-off between egg number and egg size existed in this population. Conclusion. Our study illustrates the importance of considering parasite life-history traits in a hierarchical framework to decipher complex links between biotic, abiotic factors and parasite life-history traits.


2017 ◽  
Vol 67 (2) ◽  
pp. 81-92
Author(s):  
Marta Biaggini ◽  
Claudia Corti

Human activities cause increasingly deep alterations to natural environments. Yet, the effects on vertebrates with low dispersal capacity are still poorly investigated, especially at field scale. Life history variation represents one means by which species can adapt to a changing environment. Among vertebrates, lizards exhibit a high degree of variation in life-history traits, often associated with environmental variability. We examined the female breeding output ofPodarcissiculus(Lacertidae) inside agricultural habitats, to test whether different cultivation and management influence the life-history traits of this species. Interestingly, we recorded variability of female breeding output at a very fine scale, namely among adjacent vineyards and olive orchards under different management levels. Lizards displayed the lowest breeding effort in the almost unmanaged sites, while clutch mass, relative fecundity and mean egg mass slightly increased in more intensively managed sites. However, in the most intensive cultivations we detected a life-history trade-off, where eggs from larger clutches tended to be relatively smaller than eggs from smaller clutches. This pattern suggests that agriculture can influence lizard reproductive output, partly favouring it in the presence of medium intensity cultivation but causing, in the most intensively managed sites, some environmental constraints that require a peculiar partitioning of the breeding resources. Even though further studies are needed to clarify the mechanisms driving the observed pattern, our results can be considered a starting point for evaluating the analysis of lizard breeding features as a tool to assess the impact of human activities, at least in agricultural environments.


Evolution ◽  
1991 ◽  
Vol 45 (3) ◽  
pp. 481-498 ◽  
Author(s):  
Robin M. Bush ◽  
Peter E. Smouse

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1122
Author(s):  
Mirjana Beribaka ◽  
Mihailo Jelić ◽  
Marija Tanasković ◽  
Cvijeta Lazić ◽  
Marina Stamenković-Radak

Life history traits determine the persistence and reproduction of each species. Factors that can affect life history traits are numerous and can be of different origin. We investigated the influence of population origin and heavy metal exposure on microbiota diversity and two life history traits, egg-to-adult viability and developmental time, in Drosophila melanogaster and Drosophila subobscura, grown in the laboratory on a lead (II) acetate-saturated substrate. We used 24 samples, 8 larval and 16 adult samples (two species × two substrates × two populations × two sexes). The composition of microbiota was determined by sequencing (NGS) of the V3–V4 variable regions of the 16S rRNA gene. The population origin showed a significant influence on life history traits, though each trait in the two species was affected differentially. Reduced viability in D. melanogaster could be a cost of fast development, decrease in Lactobacillus abundance and the presence of Wolbachia. The heavy metal exposure in D. subobscura caused shifts in developmental time but maintained the egg-to-adult viability at a similar level. Microbiota diversity indicated that the Komagataeibacter could be a valuable member of D. subobscura microbiota in overcoming the environmental stress. Research on the impact of microbiota on the adaptive response to heavy metals and consequently the potential tradeoffs among different life history traits is of great importance in evolutionary research.


Herpetozoa ◽  
2019 ◽  
Vol 32 ◽  
pp. 211-219
Author(s):  
Gabriel Suárez-Varón ◽  
Orlando Suárez-Rodríguez ◽  
Gisela Granados-González ◽  
Maricela Villagrán-Santa Cruz ◽  
Kevin M. Gribbins ◽  
...  

Clutch size (CS) and relative clutch mass (RCM) are considered important features in life history descriptions of species within Squamata. Variations in these two characteristics are caused by both biotic and abiotic factors. The present study provides the first account related to CS and RCM ofBasiliscus vittatusin Mexico within a population that inhabits an open riverbed juxtapositioned to tropical rainforest habitat in Catemaco, Veracruz, Mexico (170 m a.s.l.). Twenty-nine gravid females were collected and kept in captivity under favorable conditions that promote oviposition. The CS within this population was 6.2 ± 0.2 and was correlated positively with snout vent-length (SVL); while the RCM was 0.17 ± 0.006 and was correlated positively with both CS and width of egg. Factors, such as female morphology and environmental conditions, should influence these reproductive traits inB. vittatus. The data collected in this study could provide a framework for comparisons of the life history traits across populations ofB. vittatusin Mexico and within other species of the family Corytophanidae and provide a model for testing how abiotic and biotic factors may influence the CS and RCM in basilisk lizards throughout their range.


Sign in / Sign up

Export Citation Format

Share Document