scholarly journals Use of Selected Spectral Ratios to Assess the Response of Pineapple to Potassium Nutrition

2021 ◽  
Vol 1 (1) ◽  
pp. 16-22
Author(s):  
Siva K. Balasundram ◽  
Yen Mee Chong

Potassium (K) nutrition in pineapple grown on tropical peat can be problematic due to high precipitation which encourages leaching losses. Non-destructive tools that can assess K deficiency and the accompanying changes in biophysical and biochemical properties within pineapple is a good strategy to employ. In this study, we assessed the biophysical changes in pineapple (var. MD2) in response to different K rates by using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430-680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.e. Normalized Pigment Chlorophyll Index (NPCI), Plant Senescence Index (PSRI) and Red-edge Vegetation Index (RVSI) were found to best describe K treatment effects on pineapple canopy reflectance. This study could be extended further to include pineapple varieties other than MD2, and also key nutrients, such as N and P, for better fertilizer management in peat-grown pineapple.

2021 ◽  
Vol 13 (14) ◽  
pp. 2755
Author(s):  
Peng Fang ◽  
Nana Yan ◽  
Panpan Wei ◽  
Yifan Zhao ◽  
Xiwang Zhang

The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.


2020 ◽  
Vol 12 (10) ◽  
pp. 1550 ◽  
Author(s):  
Prakash Ghimire ◽  
Deng Lei ◽  
Nie Juan

In recent years, the use of image fusion method has received increasing attention in remote sensing, vegetation cover changes, vegetation indices (VIs) mapping, etc. For making high-resolution and good quality (with low-cost) VI mapping from a fused image, its quality and underlying factors need to be identified properly. For example, same-sensor image fusion generally has a higher spatial resolution ratio (SRR) (1:3 to 1:5) but multi-sensor fusion has a lower SRR (1:8 to 1:10). In addition to SRR, there might be other factors affecting the fused vegetation index (FVI) result which have not been investigated in detail before. In this research, we used a strategy on image fusion and quality assessment to find the effect of image fusion for VI quality using Gaofen-1 (GF1), Gaofen-2 (GF2), Gaofen-4 (GF4), Landsat-8 OLI, and MODIS imagery with their panchromatic (PAN) and multispectral (MS) bands in low SRR (1:6 to 1:15). For this research, we acquired a total of nine images (4 PAN+5 MS) on the same (almost) date (GF1, GF2, GF4 and MODIS images were acquired on 2017/07/13 and the Landsat-8 OLI image was acquired on 2017/07/17). The results show that image fusion has the least impact on Green Normalized Vegetation Index (GNDVI) and Atmospherically Resistant Vegetation Index (ARVI) compared to other VIs. The quality of VI is mostly insensitive with image fusion except for the high-pass filter (HPF) algorithm. The subjective and objective quality evaluation shows that Gram-Schmidt (GS) fusion has the least impact on FVI quality, and with decreasing SRR, the FVI quality is decreasing at a slow rate. FVI quality varies with types image fusion algorithms and SRR along with spectral response function (SRF) and signal-to-noise ratio (SNR). However, the FVI quality seems good even for small SRR (1:6 to 1:15 or lower) as long as they have good SNR and minimum SRF effect. The findings of this study could be cost-effective and highly applicable for high-quality VI mapping even in small SRR (1:15 or even lower).


2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Qiaoyun Xie ◽  
Yue Shi ◽  
Huichun Ye ◽  
...  

Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI < 4) and dense canopies (LAI > 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


2020 ◽  
Vol 13 (1) ◽  
pp. 076
Author(s):  
Cristiane Nunes Francisco ◽  
Paulo Roberto da Silva Ruiz ◽  
Cláudia Maria de Almeida ◽  
Nina Cardoso Gruber ◽  
Camila Souza dos Anjos

As operações aritméticas efetuadas entre bandas espectrais de imagens de sensoriamento remoto necessitam de correção atmosférica para eliminar os efeitos atmosféricos na resposta espectral dos alvos, pois os números digitais não apresentam escala equivalente em todas as bandas. Índices de vegetação, calculados com base em operações aritméticas, além de caracterizarem a vegetação, minimizam os efeitos da iluminação da cena causados pela topografia. Com o objetivo de analisar a eficácia da correção atmosférica no cálculo de índices de vegetação, este trabalho comparou os Índices de Vegetação por Diferença Normalizada (Normalized Difference Vegetation Index - NDVI), calculados com base em imagens corrigidas e não corrigidas de um recorte de uma cena Landsat 8/OLI situado na cidade do Rio de Janeiro, Brasil. Os resultados mostraram que o NDVI calculado pela reflectância, ou seja, imagem corrigida, apresentou o melhor resultado, devido ao maior discriminação das classes de vegetação e de corpos d'água na imagem, bem como à minimização do efeito topográfico nos valores dos índices de vegetação.  Analysis of the atmospheric correction impact on the assessment of the Normalized Difference Vegetation Index for a Landsat 8 oli image A B S T R A C TThe image arithmetic operations must be executed on previously atmospherically corrected bands, since the digital numbers do not present equivalent scales in all bands. Vegetation indices, calculated by means of arithmetic operations, are meant for both targets characterization and the minimization of illumination effects caused by the topography. With the purpose to analyze the efficacy of atmospheric correction in the calculation of vegetation indices with respect to the mitigation of atmospheric and topographic effects on the targets spectral response, this paper compared the NDVI (Normalized Difference Vegetation Index) calculated using corrected and uncorrected images related to an inset of a Landsat 8 OLI scene from Rio de Janeiro, Brazil. The result showed that NDVI calculated from reflectance values, i.e, corrected images, presented the best results due to a greater number of vegetation patches and water bodies classes that could be discriminated in the image, as well the mitigation of the topographic effect in the vegetation indices values.Keywords: remote sensing, urban forest, atmospheric correction.


2021 ◽  
Author(s):  
Cecilia Rodriguez-Gomez ◽  
Gabor Kereszturi ◽  
Robert Reeves ◽  
Andrew Rae ◽  
Reddy Pullanagari ◽  
...  

&lt;p&gt;Remote sensing techniques are used to explore geothermal areas. They can offer spatial, temporal and spectral information to map lithological boundaries and hydrothermal alteration in a fast and cheap manner. However, some geothermal areas are densely covered by vegetation, which can hamper remote sensing monitor efforts for geothermal areas.&lt;/p&gt;&lt;p&gt;Vegetation cover in geothermal areas can reflect the subsurface activity, reacting to interactions between soil&amp;#8217;s chemical conditions, heat and gas emissions. An example of such is kanuka (i.e. kunzea ericoides), an endemic shrub of geothermal areas in the Taupo Volcanic Zone (TVZ), New Zealand, which has been used as an indicator species for ground-based geothermal studies. This study assesses the use of airborne hyperspectral and thermal data over the Waiotapu Geothermal Field, TVZ, New Zealand, analysing kanuka shrub surface cover and its spectral response to geothermal activity. To explore the capability in hyperspectral remote sensing for geothermal site mapping and exploration, a series of vegetation indices, including; Anthocyanin Reflectance Index, Atmospherically Resistant Vegetation Index, Moisture Stress Index, Normalised Difference Vegetation Index, Simple Ratio Index, Vogelmann Index and Water Band Index were calculated from narrow bandwidth high-resolution hyperspectral.&lt;/p&gt;&lt;p&gt;The spectral response of vegetation was then analysed to explore the effects of geothermal heat, offering surrogate information on vegetation health. Vegetation indices results were compared against the thermal infrared data by visual interpretation and quantitative analyses, which shows strong spatial correlation among the vegetation cover type and heat distribution. Furthermore, exponential trendlines produced the best fit between vegetation indices and thermal infrared data. This correlation indicates soil temperatures affect the vegetation health (e.g. chlorophyll concentrations, newly forming leaves, water content). This relationship can highlight that there is valuable information in airborne hyperspectral data to complement exploration efforts, such as heat flux mapping. We conclude kanuka shrub has the potential to be employed as a proxy in exploration and monitoring of geothermal areas in New Zealand from remote sensing platforms.&lt;/p&gt;


2019 ◽  
Vol 11 (18) ◽  
pp. 2119 ◽  
Author(s):  
Naoyuki Hashimoto ◽  
Yuki Saito ◽  
Masayasu Maki ◽  
Koki Homma

Reflectance and vegetation indices obtained from aerial images are often used for monitoring crop fields. In recent years, unmanned aerial vehicles (UAVs) have become popular and aerial images have been collected under various solar radiation conditions. The value of observed reflectance and vegetation indices are considered to be affected by solar radiation conditions, which may lead to inaccurate estimations of crop growth. In this study, in order to evaluate the effect of solar radiation conditions on aerial images, canopy reflectance in paddy fields was simulated by a radiative transfer model, FLiES (Forest Light Environmental Simulator), for various solar radiation conditions and canopy structures. Several parameters including solar zenith angle, proportion of diffuse light for incident sunlight, plant height, coordinates of plants and leaf area density, were tested in FLiES. The simulation results showed that the solar zenith angle did not vary the canopy reflectance under the conditions of the proportion of diffuse light at 1.0, but the variation was greater at lower proportions of diffuse light. The difference in reflectance caused by solar radiation was 0.01 and 0.1 at the maximum for red and near-infrared bands, respectively. The simulation results also showed that the differences in reflectance affect vegetation indices (Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 2 (EVI2)). The variation caused by solar radiation conditions was the least for NDVI and the greatest for SR. However, NDVI was saturated at the least leaf area index (LAI), whereas SR was only slightly saturated. EVI2 was intermediate between SR and NDVI, both in terms of variation and saturation. The simulated reflectance and vegetation indices were similar to those obtained from the aerial images collected in the farmers’ paddy fields. These results suggest that a large proportion of diffuse light (close to 1.0) or a middle range of solar zenith angle (45 to 65 degrees) may be desirable for UAV monitoring. However, to maintain flexibility of time and occasion for UAV monitoring, EVI2 should be used to evaluate crop growth, although calibration based on solar radiation conditions is recommended.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1830
Author(s):  
Yongqian Ding ◽  
Yizhuo Jiang ◽  
Hongfeng Yu ◽  
Chuanlei Yang ◽  
Xueni Wu ◽  
...  

A coefficient CW, which was defined as the ratio of NIR (near infrared) to the red reflected spectral response of the spectrometer, with a standard whiteboard as the measuring object, was introduced to establish a method for calculating height-independent vegetation indices (VIs). Two criteria for designing the spectrometer based on an active light source were proposed to keep CW constant. A designed spectrometer, which was equipped with an active light source, adopting 730 and 810 nm as the central wavelength of detection wavebands, was used to test the Normalized Difference Vegetation Index (NDVI) and Ratio Vegetation Index (RVI) in wheat fields with two nitrogen application rate levels (NARLs). Twenty test points were selected in each kind of field. Five measuring heights (65, 75, 85, 95, and 105 cm) were set for each test point. The mean and standard deviation of the coefficient of variation (CV) for NDVI in each test point were 3.85% and 1.39% respectively, the corresponding results for RVI were 2.93% and 1.09%. ANOVA showed the measured VIs possessed a significant ability to discriminate the NARLs and had no obvious correlation with the measurement heights. The experimental results verified the feasibility and validity of the method for measuring height-independent VIs.


Sign in / Sign up

Export Citation Format

Share Document