Application of Partial Least Squares Discriminant Analysis for Discrimination of Palm Oil

2014 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Mas Ezatul Nadia Mohd Ruah ◽  
Nor Fazila Rasaruddin ◽  
Siong Fong Sim ◽  
Mohd Zuli Jaafar

This paper outlines the application of chemometrics and pattern recognition tools to classify palm oil using Fourier Transform Mid Infrared spectroscopy (FT-MIR). FT-MIR spectroscopy is used as an effective analytical tool in order to categorise the oil into the category of unused palm oil and used palm oil for frying. The samples used in this study consist of 28 types of pure palm oil, and 28 types of frying palm oils. FT-MIR spectral was obtained in absorbance mode at the spectral range from 650 cm·1 to 4000 cm·1 using FT-MIR-ATR sample handling. The aim of this work is to develop fast method in discriminating the palm oil by implementing Partial Least Square Discriminant Analysis (PLS-DA), Leaming Vector Quantisation (LVQ) and Support Vector Machine (SVM). Raw FT-MIR spectra were subjected to Savitzky-Golay smoothing and standardised before developing the classification models. The classification model was validated by finding the value of percentage correctly classified using test set for every model in order to show which classifier provided the best classification. In order to improve the performance of the classification model, variable selection method known as /-statistic method was applied. The significant variable in developing classification model was selected through this method. The result revealed that PLS-DA classifier of the standardised data with application of t-statistic showed the best performance with highest percentage correctly classified among the classifiers.

2014 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Mas Ezatul Nadia Mohd Ruah ◽  
Nor Fazila Rasaruddin ◽  
Siong Fong Sim ◽  
Mohd Zuli Jaafar

This paper outlines the application of chemometrics and pattern recognition tools to classify palm oil using Fourier Transform Mid Infrared spectroscopy (FT-MIR). FT-MIR spectroscopy is used as an effective analytical tool in order to categorise the oil into the category of unused palm oil and used palm oil for frying. The samples used in this study consist of 28 types of pure palm oil, and 28 types of frying palm oils. FT-MIR spectral was obtained in absorbance mode at the spectral range from 650 cm-1 to 4000 cm-1 using FT-MIR-ATR sample handling. The aim of this work is to develop fast method in discriminating the palm oil by implementing Partial Least Square Discriminant Analysis (PLS-DA), Leaming Vector Quantisation (LVQ) and Support Vector Machine (SVM). Raw FT-MIR spectra were subjected to Savitzky-Golay smoothing and standardised before developing the classification models. The classification model was validated by finding the value of percentage correctly classified using test set for every model in order to show which classifier provided the best classification. In order to improve the performance of the classification model, variable selection method known as /-statistic method was applied. The significant variable in developing classification model was selected through this method. The result revealed that PLS-DA classifier of the standardised data with application of t-statistic showed the best performance with highest percentage correctly classified among the classifiers.


Talanta ◽  
2013 ◽  
Vol 116 ◽  
pp. 788-793 ◽  
Author(s):  
Cristina Ruiz-Samblás ◽  
Cristina Arrebola-Pascual ◽  
Alba Tres ◽  
Saskia van Ruth ◽  
Luis Cuadros-Rodríguez

2020 ◽  
Vol 10 (19) ◽  
pp. 6724
Author(s):  
Youngwook Seo ◽  
Ahyeong Lee ◽  
Balgeum Kim ◽  
Jongguk Lim

(1) Background: The general use of food-processing facilities in the agro-food industry has increased the risk of unexpected material contamination. For instance, grain flours have similar colors and shapes, making their detection and isolation from each other difficult. Therefore, this study is aimed at verifying the feasibility of detecting and isolating grain flours by using hyperspectral imaging technology and developing a classification model of grain flours. (2) Methods: Multiple hyperspectral images were acquired through line scanning methods from reflectance of visible and near-infrared wavelength (400–1000 nm), reflectance of shortwave infrared wavelength (900–1700 nm), and fluorescence (400–700 nm) by 365 nm ultraviolet (UV) excitation. Eight varieties of grain flours were prepared (rice: 4, starch: 4), and the particle size and starch damage content were measured. To develop the classification model, four multivariate analysis methods (linear discriminant analysis (LDA), partial least-square discriminant analysis, support vector machine, and classification and regression tree) were implemented with several pre-processing methods, and their classification results were compared with respect to accuracy and Cohen’s kappa coefficient obtained from confusion matrices. (3) Results: The highest accuracy was achieved as 97.43% through short-wavelength infrared with normalization in the spectral domain. The submission of the developed classification model to the hyperspectral images showed that the fluorescence method achieves the highest accuracy of 81% using LDA. (4) Conclusions: In this study, the potential of non-destructive classification of rice and starch flours using multiple hyperspectral modalities and chemometric methods were demonstrated.


2020 ◽  
Vol 16 ◽  
Author(s):  
Linqi Liu ◽  
JInhua Luo ◽  
Chenxi Zhao ◽  
Bingxue Zhang ◽  
Wei Fan ◽  
...  

BACKGROUND: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol and physcion) are its main effective components as purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index while the content of each compound has not been specified. METHODS: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods according to Kennard and Stone algorithm for dividing the calibration/prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values. RESULTS: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411 and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365 and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%. CONCLUSION: The nonlinear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


2021 ◽  
Vol 11 (2) ◽  
pp. 618
Author(s):  
Tanvir Tazul Islam ◽  
Md Sajid Ahmed ◽  
Md Hassanuzzaman ◽  
Syed Athar Bin Amir ◽  
Tanzilur Rahman

Diabetes is a chronic illness that affects millions of people worldwide and requires regular monitoring of a patient’s blood glucose level. Currently, blood glucose is monitored by a minimally invasive process where a small droplet of blood is extracted and passed to a glucometer—however, this process is uncomfortable for the patient. In this paper, a smartphone video-based noninvasive technique is proposed for the quantitative estimation of glucose levels in the blood. The videos are collected steadily from the tip of the subject’s finger using smartphone cameras and subsequently converted into a Photoplethysmography (PPG) signal. A Gaussian filter is applied on top of the Asymmetric Least Square (ALS) method to remove high-frequency noise, optical noise, and motion interference from the raw PPG signal. These preprocessed signals are then used for extracting signal features such as systolic and diastolic peaks, the time differences between consecutive peaks (DelT), first derivative, and second derivative peaks. Finally, the features are fed into Principal Component Regression (PCR), Partial Least Square Regression (PLS), Support Vector Regression (SVR) and Random Forest Regression (RFR) models for the prediction of glucose level. Out of the four statistical learning techniques used, the PLS model, when applied to an unbiased dataset, has the lowest standard error of prediction (SEP) at 17.02 mg/dL.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


Sign in / Sign up

Export Citation Format

Share Document