scholarly journals Characterization of Botswana coal from two coal fields: Mabesekwa and Mmamabula to determine its coal rank

2020 ◽  
Vol 65 (2) ◽  
pp. 243-256
Author(s):  
Mmoloki Makoba ◽  
◽  
Taboka Moalosi ◽  
Paul S. Agachi ◽  
Edison Muzenda ◽  
...  
Keyword(s):  
2013 ◽  
Vol 19 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Soohyun Kim ◽  
Jiho Yoo ◽  
Donghyuk Chun ◽  
Sihyun Lee ◽  
Young Woo Rhee
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jielin Lu ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
Ming Cheng ◽  
Zhenzhi Wang

The accurate characterization of coal pore structure is significant for coalbed methane (CBM) development. The splicing of practical pore ranges of multiple test methods can reflect pore structure characteristics. The pore\fracture compressibility is the main parameter affecting the porosity and permeability of coal reservoirs. The difference in compressibility of different coal rank reservoirs and pore\fracture structures with changing stress have not been systematically found. The pore structure characteristics of different rank coal samples were characterized using the optimal pore ranges of high-pressure mercury intrusion (HPMI), low-temperature liquid nitrogen adsorption (LT-N2A), low-pressure carbon dioxide adsorption (LP-CDA), and nuclear magnetic resonance (NMR) based on six groups of different rank coal samples. The compressibility of coal matrix and pore\fracture were studied using HPMI data and NMR T2 spectrum under effective stress. The results show that the more accurate full pore characterization results can be obtained by selecting the optimal pore range measured by HPMI, LT-N2A, and LP-CDA and comparing it with the NMR pore results. The matrix compressibility of different rank coal samples shows that low-rank coal > high-rank coal > medium-rank coal. When the effective stress is less than 6 MPa, the microfractures are compressed rapidly, and the compressibility decreases slowly when the effective stress is more than 6 MPa. Thus, the compressibility of the adsorption pore is weak. Nevertheless, the adsorption pore has the most significant compression space because of the largest proportion in different pore structures. The variation trend of matrix compressibility and pore\fracture compressibility is consistent with the increase of coal rank. The compressibility decreases with the rise of reservoir heterogeneity and mechanical strength. The development of pore volume promotes compressibility. The research results have guiding significance for the exploration and development of CBM in different coal rank reservoirs.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document